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1. Introduction 
 
With increasing globalization of markets, Canadian firms are 
facing fierce and growing competition. To remain 
internationally competitive, on the export market or competing 
with imports at home, Canadian firms are expected to produce 
high-quality, customized goods quickly and at a reasonable 
cost. Adoption of advanced technologies is generally thought to 
be a crucial ingredient to meet this challenge. A growing 
literature has examined the importance of innovation and the 
adoption of advanced technologies to productivity growth. While 
the early literature often failed to find strong evidence of the 
anticipated link, recent firm-level studies across many countries 
have shown a strong link between product innovation and firm 
productivity, although surprisingly not between process 
innovation and productivity (OECD, 2009)1.   

Studies in this literature generally consider only total output 
or total sales when measuring productivity and do not 
distinguish between different products produced by the same 
firm or within the same plant. We propose to study the impact 
of the adoption of advanced technologies on product lines 
directly. In particular, we conjecture that some technologies are 
able to lower the cost of producing multiple product lines within 
a plant, providing an important strategic advantage—see Van 
Biesebroeck (2007a) for an application to the automotive 
industry.   

This channel of cost reduction is potentially at least as 
important as the reduction in the level of marginal production 
costs for individual products. Research into indirect effects of 
flexibility on market structure (Eaton and Schmidt, 1994) and 
on competitive interaction (Norman and Thisse, 1999), suggest 
far-reaching and long-lasting effects. Production flexibility is 
further expected to interact with outsourcing decisions and 
product introductions, as investigated by Van Biesebroeck 
(2007b) in the context of the North American automotive 
                                                            

1 Evidence for Canada, indicating qualified support, is surveyed in Rao, 
Ahmad, Horsman, and Kaptein-Russell (2002) and Globerman (2002). 
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industry. Because the extent of trade openness also influences 
firms’ optimal number of product lines (see Bernard, Redding, 
and Schott, 2009), observed technology decisions will interact 
with trade exposure.  

The main message is that in differentiated product industries, 
cost changes have the potential to have a more complex impact 
than simply shifting the cost-intercept down. They can change 
the way firms compete and how they are organized more 
fundamentally. The studies cited above are theoretical or limited 
to the automotive industry. To draw policy conclusions one 
would have to investigate whether these findings can be 
generalized for other industries, which is what we propose to do 
in this study.  

The rest of the paper is organized as follows. In Section 2, 
we introduce the empirical methodology, followed by a 
discussion of the Canadian plant-level data in Section 3. 
Estimation results are in Section 4 and we collect a few 
conclusions in the final section.  
 
2. Empirical Methodology   
 
It is widely documented—and is the standard assumption in any 
microeconomics textbook—that manufacturing sectors tend to 
be subject to positive scale economies, at least over an initial 
range. At the same time, it makes intuitive sense that costs will 
be lower if an entire plant’s output consists of identical 
products. Producing many different products side by side on the 
same production line has to weakly increase production costs—
Van Biesebroeck (2005, 2007a) provide evidence for the 
automotive industry and references to evidence for other 
industries. Informally, we will call this latter tendency 
“diseconomies of scope”, even though this is not quite the 
textbook definition, as we will keep total output constant when 
we introduce additional distinct products2.  

                                                            
2 Carlton and Perloff (2005) contains an extensive discussion of the cost 

definitions for multiproduct firms in Chapter 2. 
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From the Canadian Annual Survey of Manufactures (ASM) 
we have information on the number of products each Canadian 
manufacturing plant produced between 1988 and 1996 as well 
as its total output. For ease of measurement, we will study the 
impact of scale and scope of operations on costs through its 
dual, productivity. If a large product line is associated with 
higher costs, this will translate into lower productivity or lower 
measures of efficiency. Implicitly, we assume that the 
production technology can be characterized as:  

0 1 it 2 it 3(1) Productivity scale scope time controls  it itα α α α ε= + + + + +
 

As we can calculate plant-level productivity from the 
information in the ASM, we can directly estimate the 
coefficients in equation (1). Scale will be measured by the total 
output of a plant and scope by the number of product lines 
produced within the plant.  

In a general sample of manufacturing firms, the coefficient 
α1 is expected to be positive. By contrast, whether the 
coefficient α2 is positive or negative might vary by industry. 
Moreover, the sign of α2 might even depend on the level of 
aggregation in the analysis. For example, if important firm-level 
fixed costs such as design and R&D expenditures can be spread 
over multiple plants, there could be economies of scope at the 
firm level, notwithstanding diseconomies of scope at the plant 
level. Thus, the finding of diseconomies of scope at the plant 
level for the automotive industry by, inter alia, MacDuffie, 
Sethuraman, and Fisher (1996) is not inconsistent with the 
finding of economies of scope at the firm level for the same 
industry by Friedlaender, Winston, and Wang (1983).  

Technology surveys and the innovation literature 
conventionally draw a distinction between product and process 
innovations3. The former are usually interpreted as affecting the 
demand a firm faces and the latter as influencing its supply 
decisions through cost reductions. As such, the effects of 
                                                            

3 See for example the guidelines for collecting and interpreting 
technological innovation data in the OECD’s Oslo Manual: The 
Measurement of Scientific and Technological Activities. 
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product and process innovations are often analyzed 
independently; here we focus on process innovations. Even 
though an extensive product line leads to higher costs on 
average, technology adoption can shift that relationship. We 
study how scope economies are affected by the observed 
process technology adoption decisions.  

A second factor that is expected to affect product line choice 
is the exposure to international trade through import 
competition or a firm’s own export activities; see for example 
Baldwin and Gu (2006), Bernard, Jensen and Schott (2006), and 
Baldwin and Lileeva (2008). Indirectly, we should also expect 
trade exposure to influence technology adoption decisions 
through its effect on market shares, as modeled for example in 
Ederington and McCalman (2007). In the empirical work, we 
use the reduction in Canada-U.S. tariff rates following their 
Free Trade Agreement (FTA) to examine whether trade 
exposure influences the tradeoff between productivity and firm 
scale and scope.   

We adopt two approaches to incorporate technology adoption 
and trade exposure in the estimation of equation (1). First, we 
investigate whether the scale-scope trade-off is uniform across 
all plants and over time. This can be accomplished easily by 
estimating equation (1) over different subsamples.  

Previewing the results, we note that deterministically 
separating plants into subsamples based on several observable 
variables, in particular ownership and export status and the 
exposure to large or small tariff cuts, will lead to different 
coefficient estimates. In order to let the data determine which 
dimensions of heterogeneity across firms matter most, rather 
than the researcher imposing it, we use a flexible algorithm to 
separate firms into subsamples. To this end, we use the 
estimation method developed in Van Biesebroeck (2002, 2003), 
which allows for the presence of two different production 
technologies in the sample.   

In an application to the U.S. automotive industry, Van 
Biesebroeck (2003) showed that the trend break in productivity 
growth in the early 1980s can be understood as plants switching 
between an older “mass” technology to a modern “flexible” 



68 
 

technology. Initially, most plants used the mass technology, 
which is characterized by high scale economies, but which 
imposes a high productivity penalty if several product lines are 
produced in the plant—i.e. it has high diseconomies of scope. 
Starting in the early 1980s, new plants entered using a more 
flexible technology, where the diseconomy of scope penalty 
was reduced at the expense of lower scale economies. These 
entrants were predominantly Japanese-owned plants, but even 
continuing American-owned plants gradually switching from 
the mass to the lean technology, contributed positively to 
aggregate productivity growth.  

Equation (1) is thus generalized to: 

0 1 it 2 it 3

0 1 it 2 it 3

(2)  Productivity scale scope time    if  Flexible

                       scale scope time   if  Mass  

F
it it

M
it

i

i

α α α α ε

β β β β ε

= + + + + ∈

= + + + + ∈  
The distinction between the mass and flexible technology can 
be interpreted as a basic scale-scope trade-off in production 
technology. Both technologies are superior in one dimension: if 
only a few products need to be produced, firms should exploit 
scale economies to the fullest and use the mass technology. 
However, in the automotive industry, the proliferation of 
different car models over time gradually increased the 
attractiveness of the flexible technology for more and more 
plants. As a result, plants gravitated over time to the flexible 
technology, which has lower diseconomies of scope.  

The difficulty in estimating equation (2) directly is that we 
generally cannot observe for each observation which of the two 
technologies is used, and hence whether the α or the β 
coefficients in equation (2) apply. This problem can, however, 
be addressed by using the maximum likelihood estimator 
developed in Van Biesebroeck (2003), which integrates out the 
unobserved technology state i. The probability that a new firm 
enters with the mass technology is modeled as a function of a 
few observable variables.  

In addition, at each point in time there is, for each continuing 
mass technology plant, a probability that it switches from the 
mass to the lean technology. This probability is also modeled as 
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a function of some (potentially different) observable variables. 
Adoption decisions on advanced technologies or variables 
capturing trade exposure can be used as shifters for the 
probability that either technology is used when a plant enters 
the sample, or for the likelihood of a technology switch for 
continuing plants. As such, we do not need to observe the actual 
technology choices of plants to estimate equation (2). Instead, 
we infer the probability that either type of production 
technology is used by each plant-year observation based on the 
co-movements between productivity, the number of 
commodities produced, and total output, together with the 
technology and trade variables.   

One benefit of this approach is that we can estimate a model 
that incorporates two production technologies, even for plants 
for which no information on advanced technology adoption is 
observable4. Note that we use the term “technology” in two 
ways. On the one hand, the two characterizations of 
productivity in equation (2) are dubbed production 
technologies, which can be mass or flexible. On the other hand, 
specific advanced technologies can be adopted and this is 
observable for a subset of our sample. These will be discussed 
in greater detail in the data section.  

We also employ a second approach to incorporate 
technology adoption and trade exposure in the estimation of 
equation (1). We can model the coefficients of the scale and 
scope variables in equation (1) as being explicit functions of the 
observed technologies used by the plants. This approach is 
straightforward to implement, but is only possible for the 
limited sample of plants for which we observe technology use 
directly; moreover, this approach requires a lot of degrees of 
freedom. The implicit assumption is that economies of scope 
vary continuously and firms can gradually adjust their 
production process to match their (evolving) product line. Tariff 
levels or tariff reductions might also influence the scale and 
scope parameters as they are likely to influence other 
                                                            

4 Only about 10 percent of plants with available data on output and 
commodities fill in the technology survey questionnaire.   
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unobservable aspects of a plant’s operation. Such effects can 
easily be incorporated by modifying the definition of the scale 
and scope coefficients further.   

(3)  itkiii tariffI 22202   αααα ++=   

The 1993 Survey of Advanced Technologies records past 
adoption decisions for a list of technologies for a subset of the 
plants in our dataset. Merging in this technology adoption 
information, we can allow the coefficients α1 and α2 in (1) to 
vary with some observed technology adoption decision (Ii) and 
with the tariff faced by the firm. Equation (3) illustrates this for 
the scope coefficient. 

 
3. Data  
 
The paper uses data from three sources. The Canadian Annual 
Survey of Manufactures (ASM) has data on the key plant-level 
variables: output, employment, productivity, 4-digit Canadian 
Standard Industrial Classification (SIC) industry codes, export 
status and foreign ownership. Productivity is defined as real 
value added per worker, since the ASM does not collect data on 
capital stock or investment and thus does not allow the 
calculation of total factor productivity. The ASM has 
commodity-level information for ‘long-form’ plants. These 
plants, which typically are larger, receive an extended survey 
questionnaire; only for these do we have data on the number of 
commodities produced at the 6-digit Standard Classification of 
Goods (SCG) level5. Our sample pools data on all plants with 
available commodity data for the years 1988, 1993 and 1996. 
This gives us an unbalanced panel with 46,324 observations on 
24,789 unique plants; i.e., there are fewer than two observations 
per plant on average.   

Information on the use of advanced technologies is taken 
from the 1993 Survey of Innovation and Advanced 

                                                            
5 The level of detail of the 6-digit SCG is about 5,000 commodities. 
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Technology6.  This survey has data on plants’ use of twenty two 
advanced technologies, which are divided into five groups: 
Design and Engineering (DE), Fabrication and Assembly (FA), 
Automated Material Handling (AMH), Inspection and 
Communications (IC) and the combined groups of 
Manufacturing Information Systems and Integration and 
Control (MIS).  The number of plants included in this survey is 
much smaller than our full sample; we call this the technology 
sample (N=3,887)7.     

Finally, we also use industry-level information at the 4-digit 
1980 Canadian SIC level on Canadian tariffs against the United 
States and on U.S. tariffs against Canada in 1988, 1993 and 
1996. These data were created by Daniel Trefler and used in 
Trefler (2004)8.   

Descriptive statistics for the principle variables used to 
estimate equation (1), both for the full and the technology 
sample, are in Table 1. The average number of commodities 
produced per plant is similar in both samples (2.437 and 2.720 
commodities respectively). Plants in the technology sample are 
larger and more productive, they are more likely to be foreign-
controlled and are more likely to export: 32.4 percent of the 
plants in the technology sample are foreign-controlled, 
compared to 18.5 percent in the sample of all plants; and 31.7 
percent of plants in the full sample and 39.4 percent of plants in 
technology sample are exporters.  

Technology use is summarized in Table 2. There are large 
differences across technologies in many dimensions: popularity, 
size of users and numbers of commodities produced by users. 
DE, FA and MIS technologies are relatively popular, used by 
over 30 percent of plants, versus only 5.7 percent for AMH 
technology. Of the DE technologies, a1 (Computer-Aided 

                                                            
6 The list of technologies surveyed is in Appendix Table A.1; the entire 

survey questionnaire can be found in Baldwin and Sabourin (1995).    
7 Note that the survey contains sample weights for estimation of the 

characteristic means of the population of manufacturing plants. 
8 We would like to thank Daniel Trefler for providing us with the detailed 

tariff data. 
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Design/Computer-Aided Engineering), is the most popular 
technology, used in 806, or 21 percent of observations. It is 
closely followed by a16 (Programmable controller/s), of the IC 
group, which is used in 804 observations. On the opposite side, 
only about 3 percent of observations indicate the use of a6 
(Material Working Lasers, of the FA group) and a22 (Artificial 
Intelligence and/or Expert Systems, of the MIS group) 
technologies9.   

The average number of commodities per user is higher for IC 
and MIS technologies. This may indicate that these technologies 
increase flexibility of production.  The average size of user, 
measured by shipments, is the largest also for IC and MIS 
technologies, and is the lowest for DE technologies. So the use 
of IC and MIS technologies might be associated with economies 
of scale. (Note that these relationships can be industry-specific, 
rather than plant-specific.) In general, at a technology level, 
there appears to be a positive correlation between output and the 
number of commodities. This makes it more difficult to 
distinguish which technologies are more likely to be flexible, as 
opposed to mass-production, using standard linear methods.  

The technology survey contains the number of years in use 
for each technology type. Since we want to use technology 
information to explain the level of productivity, we only use 
information on technologies adopted at least three years before 
the year productivity was observed. This lead time should 
account for learning, training, and implementation effects. For 
observed productivity in 1988, we use data on technologies in 
use by 1985; for 1993 productivity we use data on technologies 
in use by 1990; for 1996 productivity we use data on 
technologies in use by 1993. Note that, in the survey, 
technology use accumulates over time, so plants can adopt 
technologies, but they cannot discard them.  As a result we have 
the following increasing technology use rates: 28 percent of 
plants used at least one technology in 1988, 46.3 percent in 
1993, and 54.6 percent in 1996.  
                                                            

9 Note: The MIS group includes software such as Manufacturing 
Information Systems and Integration and Control. 
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4. Estimation Results  
 
4.1  The fundamental trade-off  
 
Table 3 contains a first set of estimates of equation (1) on the 
full sample and the technology sample. It lists both results 
controlling for industry-specific fixed effects (at the 4-digit SIC 
level, which includes 235 dummies) and for plant-level fixed 
effects. Recall that the panel is not balanced; accordingly, 
approximately one third of plants that are observed only once 
are dropped when plant fixed effects are included.   

The estimated coefficients all have the expected signs. The 
number of commodities is negatively related to productivity in all 
specifications, indicating a productivity penalty for 
diversification at the plant level. In contrast, the level of total 
shipments is positively related to productivity, which is 
consistent with positive scale economies.   

Note that we do not want to attach any causal interpretation 
to these results. One should definitely not try to infer from the 
estimated coefficients what the expected productivity gains 
would be if a plant’s level of operation were exogenously 
enlarged, or if the number of products in production were 
exogenously reduced.   

This becomes apparent when we control for plant fixed 
effects—see  results in column (2) of Table 3. Compared to the 
results with only industry fixed effects in column (1), the 
productivity penalty for variety becomes notably smaller. The 
reverse happens for the magnitude of the positive productivity 
premium for higher output, which increases when plant-specific 
productivity fixed effects are controlled for. The changes in the 
estimated coefficients are consistent with plants that face 
increasing returns to scale expanding operations, and plants 
facing lower than average diseconomies of scope adding new 
product lines.  

Estimates on the technology sample are very similar in 
magnitude to those for the full sample. As the sample size is 
more than ten times smaller, it should not come as a surprise 
that significance levels are lower.  
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Because productivity is measured by value added per worker 
and scale by total shipments, the latter variable is endogenous 
by construction in equation (1). In Table 4, we report estimation 
results using an instrumental variable estimator for the 
technology sample and industry fixed effects. Output is 
instrumented either with the log of average output for a plant’s 
industry,10 the results of which are presented in column (1) of 
Table 4, or with a plant’s own use of heat and power, results in 
column (2).   

Using the average industry scale as the instrument, estimates 
of both scope and scale coefficients are remarkably similar to 
the original estimates in Table 3. The absolute magnitudes of 
both coefficients are larger, but changes are minimal. Using the 
cost of heat and power as instrument, both coefficients become 
smaller, but the principal finding survives: scale is associated 
with higher productivity while breadth of the product line 
results in a productivity penalty.   

The important result is that, in all specifications, irrespective 
of the type of controls, the sample, and whether or not 
instrumental variables were used, plants face a fundamental 
trade-off. There are potential productivity gains from exploiting 
scale economies and operating at a higher level but, if this 
requires the introduction of additional product lines, there will 
be a negative counteracting force on productivity. We believe 
this scale-scope interaction is a fundamental trade-off that all 
manufacturing firms face.  

 
4.2  Discrete technology types  
 
We now investigate whether all plant-year observations face the 
same scale-scope trade-off or whether there are important 
heterogeneities.  

                                                            
10 The average industry output for each plant is constructed as log of the 

sum of shipment of plants in the 4-digit SIC industry minus output of a given 
plant, divided by the number of plants in this industry minus one. The own 
output is netted out to avoid endogeneity. 
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The first dimensions of heterogeneity that we investigate are 
ownership and export status. A large literature has already 
documented that plants that are foreign-owned and/or are 
exporters are unusual in many respects: they tend to be larger, 
pay higher wages, use more advanced technologies, and have 
higher productivity levels. The results in Table 5 indicate that, 
for a given plant, falling into these categories (i.e., being foreign 
owned or being an exporter) does not translate into a monotonic 
relationship for the scale or scope effects on productivity. We 
estimated equation (1) separating the (full) sample into four 
mutually exclusive groups of plants: domestically-controlled 
non-exporters, domestically-controlled exporters, foreign-
controlled non-exporters, and foreign-controlled exporters. The 
estimates are reported for specifications with either industry or 
with plant fixed effects.   

First, it should be noted that, for each of the four sub-groups, 
and using either set of controls, the scale coefficients are 
estimated to be positive and the scope coefficients to be 
negative. The scale-scope trade-off appears to be a pervasive 
phenomenon.   

Further, we interpret a combination of large scale and scope 
coefficients—in absolute value for scope—to be indicative of 
an inflexible production process, or mass technology. Foreign-
owned plants operating only for the Canadian market (non-
exporters) are found to face the highest returns to scale, but also 
the highest productivity penalty associated with breadth of 
product line. On average, these plants seem to have installed 
production systems that favour producing large quantities of the 
same product—mass technology. This observation holds using 
either type of controls.  

For the other types of plants, the ordering depends on 
whether we eliminate the variation across plants—i.e., whether 
we include plant fixed effects or not. If we do not, foreign-
owned exporters are at the other extreme of foreign-owned non-
exporters. They have the lowest scale coefficients, and by far 
the lowest scope coefficient (in absolute value). This suggests 
that they have chosen an entirely different strategy, namely to 
set up flexible production systems that can easily accommodate 
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additional product lines without incurring much of a 
productivity penalty. Perhaps they are using Canada as a more 
flexible production base to serve the domestic, U.S., and other 
markets, while their highest volume plants are located in the 
United States to save on transportation costs. Of course, this is 
little more than speculation.  

The above finding seems to be at odds with those in Baldwin 
and Gu (2006), who found that, in response to the Canada-U.S. 
FTA, Canadian plants shed product lines and increased scale, 
which led to sizeable productivity gains. The results in Table 5, 
column (2), which control for plant-level fixed effects, do 
indicate that identifying the scale effect for foreign-owned 
exporters solely from plant-level changes over time does lead to 
a high estimate for the coefficient on scale economies.  

Results in Table 5, column (2) are on the whole consistent 
with Canadian-owned plants enjoying less potential to realize 
scale economies when they expand production. This could be 
the result of different technology adoption decisions or 
inexperience in scaling up the level of operations. It could also 
reflect a residual difference in outlook as Canadian industries 
have produced for years at a lower scale and with more diverse 
product portfolios for the much smaller Canadian market.  

Comparing Canadian-owned exporters and non-exporters, the 
differences are small, but we do find in both specifications that 
the point estimates for the scope coefficients are higher (in 
absolute value) for exporters, as expected. This implies that 
exporters should be focusing on their comparative advantage and 
worrying less about producing a wide range of products. At least 
with plant-level fixed effects included, this strategy does seem to 
come with higher scale economies.  

Note that ‘exporter’ status in Table 5 does not capture the 
effect of the FTA per se, since this group combines new 
exporters (who entered export markets after 1988) with 
continuing exporters. We revisit the particular effect of the 1988 
trade liberalization event later, when we allow the scale and 
scope coefficients to vary continuously. We can, however, 
already note that industries that received the largest tariff cuts 
were slightly more flexible than those that had received the 
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lowest cuts, but the differences were small for the two groups of 
plants. We do not go further into those issues here as U.S. and 
Canadian tariff cuts should also have different effects and we 
can incorporate this feature later on.  

We expect the scale-scope trade-off to differ across 
industries. For example, industries producing large varieties of 
complex products should have greater incentives to invest in 
flexible technologies to mitigate some of the scope effects. We 
estimated equation (1) on all 2-digit SIC industries but, to 
conserve space, we only indicate a few of the findings11. 
Industries that show a high penalty for product variety include 
Primary Textile SIC18, Electrical and Electronic Products 
SIC33, Chemical Products SIC37. The highest economies of 
scale are observed in Chemical Products SIC37, Petroleum 
Products SIC36, Beverages SIC11, Rubber SIC15 and Wood 
SIC25. Virtually all industries show a positive sign on the scale 
coefficient and a negative sign for scope, but the positive 
relationship between output and productivity tends to be far 
more robust. 

 
4.3  Discrete technology types with endogenous assignment  
 
We now estimate the model with two technology types, 
allowing the data to self-select into two groups, using the 
estimation methodology from Van Biesebroeck (2003) that was 
described earlier. The first time a plant is observed in the 
sample the algorithm assigns a probability that the production 
technology is of the old type (with one minus that probability 
being assigned to the new technology type). Going forward, a 
second probability applies which determines the likelihood that 
plants still using the old technology are updating to the new 
one. While we do not observe the actual production 
technologies used, we rely on observable variables to 
parameterize the two probabilities, which together imply a 
probability for both technologies for each plant at each point in 
time. In the algorithm, the new technology is an absorbing 
                                                            

11 The complete set of estimates is available upon request.  
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state—i.e., once a plant adopts the new technology, it will not 
subsequently switch to the alternative technology. We do not 
impose any restrictions on the nature of the scale-scope trade-
off for the two technologies.  

Two questions are important. First, do both technologies have 
the characteristics illustrated in Tables 3, 4, and 5 of positive 
scale and negative scope economies? Second, if one of the two 
technologies can be characterized as more flexible—i.e. has 
lower absolute values of both the scale and scope coefficients—is 
it the new or the old technology?  

In the results presented in Table 6, the initial probability of a 
plant using the new technology is modeled as a function of a 
year trend and the foreign ownership dummy. As foreign-
controlled plants have easier access to new technologies, they 
might be more likely to operate with the new technology, and 
thus not be open to the possibility of a technology switch. On 
the other hand, Canadian-controlled plants are more likely to 
focus on the domestic market and to produce a greater variety of 
products, which would favour the flexible technology, be it the 
old or new one.   

As in Van Biesebroeck (2003), we use the average number of 
commodities produced by competitors to predict the probability 
of technology switching. This variable should be a good 
predictor for the demand for the comparative advantage of the 
new technology, be it higher scale or scope economies.   

The results of this non-linear maximum likelihood estimation 
are presented in Table 6. Both scale coefficients are estimated to 
be positive and both scope coefficients to be negative, 
indicating that both technologies are characterized by the same 
scale-scope trade-off as before12.   
                                                            

12 Note that the coefficients of the old technology are estimated directly, 
and reported in column (1) of Table 6, while the coefficients of the new 
technology are calculated as the sum of the old technology coefficients and 
two difference coefficients. The latter are estimated directly and results are 
reported in column (2). As a result, no t-statistic for the new technology 
coefficients in column (3) are reported, but the very high t-statistics on the 
difference coefficients indicate that the scale and scope effects are 
significantly different for the two technologies. 
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The estimates indicate very starkly that the ‘old’ production 
technology is the one characterized by greater flexibility. The 
productivity penalty for variety increases tremendously, from -
0.077 to -0.785, for the new technology. The advantage of the 
new technology is a corresponding increase in the scale effect, 
with a coefficient on total shipments of 0.498, more than double 
the 0.226 estimate for the old technology.   

The estimates on the parameters governing the probabilities 
for either technology (not presented) suggest that the likelihood 
of new plants entering with the mass technology increases over 
time; although the increase is not statistically significant. If 
plants change their operations, switches tend to make the 
production technology less flexible, but with higher scale 
effects.  

The finding of plants switching towards the mass technology 
differs from the pattern observed for the U.S. automotive 
industry, but it is a plausible response to the Canada-U.S. FTA. 
As a result of the FTA, Canadian plants obtained easier access to 
the much larger U.S. market, which is consistent with the finding 
in Table 6 that over time they become more likely to choose the 
technology with the highest scale economies. The finding is also 
consistent with the FTA-induced increase in specialization of 
production found by Baldwin and Gu (2006).  They found that 
tariff cuts reduced product diversification and increased 
production runs for exporters, which should be expected to focus 
on a few comparative advantage products. For non-exporters, 
tariff cuts are also found to reduce product diversification, which 
is consistent with the greater domestic competition they are 
facing from U.S. firms.  
 
4.4  A continuum of production technologies  
 
The final step in our analysis is to analyze what the patterns in 
the productivity distribution look like, if we allow the scale and 
scope parameters to vary continuously as a function of observed 
technology adoption decisions. This analysis can only be 
conducted on the limited technology sample, because only for 
those plants do we observe technology use directly. As a 
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robustness check, we allow the coefficients on scale and scope 
to vary with the Canadian and U.S. import tariffs, as in equation 
(3). The latter regression can be estimated on the full sample. 
Plants that are subject to greater import competition or 
enhanced export opportunities will have different demands for 
technology to boost their potential scale and/or scope 
economies; this should show up in the coefficient estimates.  

For the technology sample, we have information on the use 
of twenty-two advanced technologies—the full list is in the 
Appendix. Some of these technologies could reduce the 
productivity penalty associated with product variety, while 
some others could even increase them. There is no way for us to 
determine a priori the expected effect of each technology based 
on its description—although the patterns in Table 2 provide 
some hints.  

For simplicity, we create an aggregated binary variable, 
which equals one if any of the twenty-two advanced 
technologies is adopted, and zero otherwise. We then estimate 
equation (1) for the technology sample, allowing for interaction 
between technology use and the scale and scope variables. The 
estimates are reported in the top panel of Table 7 for the entire 
technology sample.   

With either industry or plant fixed effects, technology 
adoption is found to be related to higher returns to scale. We 
already know from the summary statistics in Table 2 that large 
firms are a lot more likely to adopt advanced technologies; 
nonetheless, the estimate in Table 7 indicates that this does not 
mean that they have exploited all scale economies. On the 
contrary, advanced technology use is associated with higher 
scale economies even if the adopting plants are larger. Note that 
the direction of causality could go either way. It could be that 
new technologies boost scale economies, but it might just as 
well be that firms facing higher scale economies are upgrading 
their technologies most rapidly.  

The coefficient on the interaction between technology use 
and the number of commodities, “Scope x Technology”, is 
estimated to be negative with either set of controls; the effect is 
especially important in the specification with plant fixed effects. 
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When plants increase the number of commodities and at the 
same time adopt new technologies, their productivity takes a 
large hit. We find that technology adoption is more prevalent 
for inflexible mass technology plants that face scale economies; 
interpreted differently, new technologies tend to make the 
production technology less flexible13.   

We estimated the same specification separately for two 
groups of industries, which are sorted based on the extent of 
tariff cuts in the Canada-U.S. FTA. The results in panels (b) and 
(c) of Table 7 demonstrate that the above effects are driven by 
industries that experienced large tariff cuts. For industries that 
experienced small cuts, the interaction terms between 
technology and the scale and scope effects are always 
insignificant. For industries subject to large tariff cuts, the 
association between technology adoption and inflexible 
production becomes even stronger.  

We next seek to evaluate the impact of the individual twenty-
two technologies on production flexibility by including a full set 
of technology use dummies and interactions between their use 
and the scale and scope variables. Unfortunately, this analysis is 
complicated by serious multicollinearity; the vast majority of 
the coefficients on the interaction terms are not statistically 
significant.  

One promising line of future research on this issue is to use 
factor analysis to reduce the dimensionality of the technology 
adoption decision.  We found that 74 percent of the variation in 
adoption rates is explained by a single factor, and 90 percent by 
the first two factors. The first factor puts non-zero weights on 
most technologies, but the highest weight falls on technologies 
a16 and a17 from the Inspection and Communications group, 
and technologies a18 and a21 from Manufacturing Information 
Systems group14. In follow-up work, we plan to estimate 

                                                            
13 Distinguishing between these two causal interpretations is beyond the 

scope of this paper. 
14 The second factor explains 15 percent of variation, but places 

substantial weights only on 5 technologies (four of which are from the 
Design and Engineering Group). 
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equations (1) and (3) using just the first two factors as 
interaction terms for the scale and scope variables.  

Finally, we take a closer look at the direct impact of tariff 
cuts. In the full sample, we include Canadian and U.S. tariffs 
into equation (1), as well as interactions between tariffs and 
output, and tariffs and the numbers of products, as in equation 
(3). As we use actual tariff levels, low values of the tariff 
variables indicate liberalized trade. Over time, tariff levels have 
come down; in 1996, most tariffs were at or very close to zero.   

The results in Table 8 for the specification with only industry 
fixed effects yields mostly insignificant results; accordingly, we 
focus on the results for the specification with plant-level fixed 
effects. The estimates on the uninteracted tariff variables in 
column (2) imply that plants in industries initially protected by 
high Canadian tariffs had on average higher productivity 
growth, while those facing higher U.S. tariffs had lower growth. 
Viewed differently, plants in industries where Canadian tariff 
concessions were large enjoyed on average higher rates of 
productivity growth—potentially due to stronger competition 
post-FTA.  

Interacting the U.S. tariff with the variables of interest yields 
a very small point estimate for the impact on labour 
productivity of increased scope which is not significantly 
different from zero. The interaction with scale, on the other 
hand, exerts a large, positive, and statistically very significant 
impact on labour productivity. This may reflect the presence of 
large potential scale economies for plants that initially faced 
higher U.S. tariffs.  When export opportunities to the United 
States opened up, plants either invested in new technology 
needed to access these potential scale economies or—more 
plausibly in our view—simply expanded output, exploiting and 
exhausting the scale economies that their existing technologies 
provided.  

The reverse was taking place on the domestic Canadian 
market. Plants in industries where Canadian tariffs declined 
significantly saw their available scale economies grow. A 
plausible explanation is that competition from expanding U.S. 
imports reduced the actual scale of operations of many 
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domestic plants, which would imply increased available 
potential scale economies, if production technology did not 
adjust. An additional finding for these industries is that the 
coefficient on the interaction between the Canadian tariff level 
and the number of commodities is negative. Initially, when 
tariffs were high, there were sizeable diseconomies of scope, 
but as tariffs declined to zero, these diseconomies disappeared. 
Canadian plants seem to have adjusted to trade liberalization by 
making their production process more flexible and by reducing 
the productivity penalty associated with a large product 
portfolio. Another process that might have contributed to the 
observed pattern is that these plants cut product lines and the 
lower diversification brought their product portfolio back into 
an area where they could more efficiently handle the variety.  
 
5. Conclusion 
 
The results indicate that Canadian manufacturing plants face a 
trade-off in terms of productivity: higher output increases 
productivity, but a larger product variety reduces it. No matter 
how one cuts the data, this pattern is robust, but the productivity 
premium for scale and the penalty for variety does vary across 
plants.  

We can discern situations where both premiums are large in 
absolute value, which we call mass production or inflexible 
plants. In other situations, which we call flexible production 
technologies, both premiums are low indicating low returns to 
scale, but also lower diseconomies of scope. Either technology 
can be ideal for a plant, depending on its scale of operation and 
production mix. For example, we find that foreign-controlled 
plants that do not export seem to choose the least flexible 
technology, i.e. have the highest productivity premiums on both 
scale (positive) and scope (negative).   

We estimated a model that allows for two parameterizations 
of the scale-scope trade-off in the production technology 
available to plants in our sample. The estimation algorithm lets 
the data decide which technology is most appropriate for each 
plant-year observation and incorporates one-way technology 
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switching. The two technologies thus estimated can clearly be 
identified as one mass and one flexible technology.  

Our results suggest that the mass technology is gaining in 
importance over time. The exploitation of higher scale 
economies seems to have become more valuable over time than 
maintaining production flexibility.  

When we allow the scale and scope premiums to vary 
continuously with technology adoption and tariff rates, similar 
conclusions emerge. Technology adoption is associated with 
less flexible production, especially for plants in industries that 
saw large tariff cuts as a result of the Canada-U.S. FTA. In 
particular, the reduction of U.S. tariffs is associated with a 
decrease in available scale economies, consistent with the large 
expansion in output by Canadian exporters. The reduction of 
Canadian import tariffs, on the other hand, has the reverse effect 
on scale economies for import-competing industries, but it also 
reduced the productivity penalty associated with product variety 
in those industries—either due to operational changes or due to 
the elimination of product lines. 
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 Table 1: Descriptive Statistics 
  MEAN STD MIN MAX 

                                                     Full sample1, N=46,324 
Log of productivity 10.952 0.759 2.526 18.759 
Number of commodities 2.437 2.109 1.000 33.000 
Log of no. of commodities 0.660 0.634 0.000 3.497 
Log of shipments 15.189 1.800 8.854 23.575 
Foreign-control dummy 0.185 0.388 0.000 1.000 
Export status dummy 0.317 0.465 0.000 1.000 

                                                 Technology sample2,    N=3.887 
Log of productivity 11.160 0.791 4.920 16.532 
Number of commodities 2.720 2.671 1.000 33.000 
Log of no. of commodities 0.727 0.689 0.000 3.497 
Log of shipments 16.115 1.687 10.309 21.637 
Foreign-control dummy 0.324 0.468 0.000 1.000 
Export status dummy 0.394 0.489 0.000 1.000 
Notes: 
1. All plants in the ASM with available commodity data for 1988, 1993 

and 1996. 
2. Plants that were both in the ASM with available commodity data for 

1988, 1993 and 1996, and in the 1993 Survey of Innovation and 
Advanced Technology. 
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Table 2: Technologies Adoption Rates (Technology Sample, N=3,887)  

 MEAN SE  MEAN SE 
No. of 

Adopters 

Average No. 
of 

Commodities 

Average 
shipments 
of adopters 

DE 0.360 0.480 a1 0.334 0.472 806 2.78 91,853,924 
   a2 0.121 0.326 294 2.83 70,004,980 
   a3 0.070 0.255 148 2.81 92,429,905 

FA 0.252 0.434 a4 0.076 0.266 180 2.68 146,984,000 
   a5 0.175 0.380 512 2.55 59,700,646 
   a6 0.028 0.165 72 2.60 145,206,917 
   a7 0.054 0.226 130 2.38 175,467,823 
   a8 0.053 0.224 138 2.43 111,251,007 

AMH 0.057 0.232 a9 0.057 0.232 165 2.98 102,421,818 
   a10 0.000 0.000 55 2.85 149,016,473 

IC 0.398 0.490 a11 0.091 0.288 255 3.40 187,672,427 
   a12 0.118 0.322 332 3.14 180,070,018 
   a13 0.169 0.375 369 2.97 146,316,293 
   a14 0.134 0.340 303 3.21 154,873,426 
   a15 0.112 0.315 240 3.38 125,131,825 
   a16 0.277 0.447 804 3.10 119,722,148 
   a17 0.232 0.422 624 3.13 136,557,646 

MIS 0.308 0.462 a18 0.220 0.415 577 3.11 118,056,711 
   a19 0.127 0.333 307 3.21 148,108,186 
   a20 0.089 0.284 233 2.87 132,275,386 
   a21 0.134 0.340 351 3.26 179,371,903 
      a22 0.032 0.177 73 3.32 135,253,575 
Notes: 
1. Average shipments of adopters is in current Canadian dollars. 
2. The MIS group includes software such as Manufacturing Information 

Systems and Integration and Control. 
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Table 3: Impact of Scale and Scope on Plant Productivity 
 Dependent variable is the log of labour productivity 
 Estimate t-statistic Estimate t-statistic 

         (1) (2) 

Fixed effects:        Industry Plant 

Full Sample, N=46,324 
Scope -0.091 (18.48) -0.025 (-2.86) 
Scale 0.220 (114.26) 0.428 (55.28) 
Year1993 0.153 (20.20) 0.114 (16.64) 
Year1996 0.202 (26.80) 0.106 (14.50) 

Technology Sample, N=3,887 
Scope -0.117 (-6.97) -0.051 (-1.94) 
Scale 0.229 (28.91) 0.537 (21.88) 
Year1993 0.145 (5.99) 0.110 (5.61) 
Year1996 0.196 (7.90) 0.096 (4.45) 
Note: Estimates of equation (1). Scope is measured by the log of number of 
commodities; scale by the log of shipments 
 
 
Table 4: Estimates of Scale and Scope Effects using Instrumental Variables, 
Technology Sample, N=3,887 

 Dependent variable is the log of labour productivity 
 Estimate t-statistic Estimate t-statistic 
 (1) (2) 
Fixed effects: Industry Plant’s own 
Instruments  Mean industry-level scale Heat & power expenditure 
Scope -0.124 (-7.14) -0.087 (-5.00) 
Scale 0.248 (17.19) 0.151 (15.01) 
Note: Estimates of equation (1) using instrumental variables for scale (total 
shipments). Variables are measured as in Table 3 and year dummies are 
included, but coefficient estimates not reported. 
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Table 5: Estimates of the scale-scope trade-off for different types of plants 
(Full sample)  

  Dependent variable is the log of labour productivity 

   Estimate t-statistic Estimate t-statistic N 
  (1)   (2)  

Fixed Effects  Industry    Plant  
Domestic-
owned, Non-
exporters 

Scope -0.080 (-10.90) -0.026 (-1.63) 24,488 

Scale 0.220 (73.94) 0.413 (30.72)  
Domestic-
owned, 
Exporters 

Scope -0.097 (-12.12) -0.030 (-1.73) 13,289 

Scale 0.205 (47.98) 0.442 (26.51)  
Foreign-
owned, Non-
exporters 

Scope -0.163 (-7.58) -0.058 (-1.34) 3,602 

Scale 0.255 (22.80) 0.570 (17.67)  
Foreign-
owned, 
Exporters 

Scope -0.048 (-3.34) -0.043 (-1.56) 4,945 

Scale 0.197 (24.82) 0.523 (20.25)   

Notes: OLS estimation results for equation (1), with firms split in four 
mutually exclusive categories. Year dummies included as controls.  
 
 
Table 6: Nonlinear Estimation of Two Technologies with Technology 
Switching (Technology sample, N=3,887)  

Dependent variable is labour productivity 

 Old technology Difference  New technology 
 Estimate t-statistic Estimate t-statistic Implied Estimate 
 (1)    (2)           (3)  
Scope -0.077 (-6.47) -0.708 (-3.68) -0.785  
Scale 0.226 (46.04) 0.272 (3.85) 0.498   
Note: Maximum likelihood estimation of the coefficients on the old 
technology, column (1), and the difference between the coefficients of the old
and new technologies, column (2). The implied estimates for the coefficients 
on the new technology are in column (3). The old technology is the one that 
plants can still switch out of.  
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Table 7: Scale-scope Trade-off with Coefficients Varying with Technology 
Use  

 Dependent variable is log of labour productivity 

 Estimate t-statistic  Estimate t-statistic 
 (1)   (2) 

Fixed effects: Industry    Plant 

(a) Entire technology sample (N = 3,887) 
Scope -0.110 (-5.08) -0.015 (-0.48) 
Scale 0.218 (20.87) 0.512 (18.99) 
Technology use -0.627 (-2.72) -0.818 (-2.13) 
Scope x Technology -0.019 (-0.61) -0.080 (-2.15) 
Scale x Technology 0.037 (2.59) 0.053 (2.25) 

(b) Industries with large tariff cuts (N = 2,242) 
Scope -0.098 (-3.44) -0.006 (-0.14) 
Scale 0.213 (16.23) 0.532 (14.96) 
Technology use -1.259 (-4.11) -1.024 (-2.06) 
Scope x Technology -0.064 (-1.62) -0.116 (-2.35) 
Scale x Technology 0.077 (4.05) 0.066 (2.19) 

(c) Industries with small tariff cuts (N = 1,453) 
Scope -0.140 (-4.04) -0.033 (-0.66) 
Scale 0.234 (13.27) 0.458 (10.02) 
Technology use 0.182 (0.49) -0.719 (-1.11) 
Scope x Technology 0.072 (1.43) -0.019 (-0.31) 
Scale x Technology -0.017 (-0.73) 0.042 (1.06) 
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Table 8 Scale-scope Trade-off as a Function of Canadian and 
U.S. Tariffs (full sample)  

 Dependent variable is log of labour productivity 

 Estimate t-statistic Estimate t-statistic 
 (1)    (2) 

Fixed effects: Industry    Plant 

Scope -0.078 (-12.89) -0.010 (-1.00) 
Scale 0.220 (97.62) 0.428 (53.05) 
Tariff into Canada (TC) -0.504 (-0.52) 5.159 (3.40) 
Scope x TC -0.134 (-0.82) -0.356 (-1.83) 
Scale x TC 0.010 (0.17) -0.321 (-3.39) 
Tariff into U.S. (TUS) 1.913 (0.97) -7.606 (-2.39) 
Scope x TUS -0.338 (-1.21) 0.018 (0.05) 
Scale x TUS -0.088 (-0.72) 0.448 (2.24) 
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Appendix   
 
Table A.1 List of advanced manufacturing technologies  
Code  Description  
Design and Engineering 
A1  Computer  aided design (CAD) and /or Computer  aided engineering 

(CAE)  
A2  CAD output used to control manufacturing machines (CAD/CAM)  
A3  Digital representation of CAD output used in procurement activities  

Fabrication and Automation 
A4  Flexible manufacturing cell(s) (FMC) or systems (FMS)  
A5  Numerically controlled and computer numerically controlled 

machines   
A6  Material working laser(s)  
A7  Pick and place robots(s)  
A8  Other robots  

Advanced Material Handling 
A9  Automated storage and retrieval systems (AS/RS)  
A10  Automated guided vehicle systems (AGVS)  

Inspection and Communications 
A11  Automated sensor-based equipment used for inspection/testing of 

incoming or in-process materials  
A12  Automated sensor-based equipment used for inspection/testing of 

final product  
A13  Local area network for technical data  
A14  Local area network for factory use  
A15  Inter-company computer network linking plant to subcontractors, 

suppliers and/or customers  
A16  Programmable controller(s)  
A17  Computer(s) used for control on factory floor  

Manufacturing Information Systems  
A18  Material requirement planning  (MRP)  
A19  Manufacturing resource planning  (MRP II)  

Integration and Control 
A20  Computer integrated manufacturing (CIM)  
A21  Supervisory control and data acquisition (SCADA)  
A22  Artificial intelligence and/or expert systems  
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