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During the 1980’s, all Japanese automobile producers opened assembly plants in North America.
Industry analysts and previous research claim that these transplants are more productive than incumbent
plants and that they produce with a substantially different production process. I compare the production
processes by estimating a model that allows for heterogeneity in technology and productivity, both of
which are intrinsically unobservable. The model is estimated on a panel of assembly plants, controlling
for capacity utilization and price effects.

The results indicate that the more recent technology uses capital more intensively and it has a higher
elasticity of substitution between labour and capital. Hicks-neutral productivity growth is estimated to be
lower, while capital-biased (labour-saving) productivity growth is higher for the new technology. Using
the estimation results, I decompose industry-wide productivity growth and find plant-level changes in
lean plants to be the most important contributor. Plant-level productivity growth is further decomposed
to reveal the importance of capital-biased productivity growth, increases in the capital–labour ratio, and
returns to scale.

1. INTRODUCTION

Measuring technological change, which is defined as the shift of a production function over time,
becomes harder if plants can choose which production technology to adopt. In the automobile
assembly industry there is evidence that plants choose to operate with mass or lean technology.
I estimate technical change for the industry using a rich plant-level data set for the U.S. Firms
choose which technology to employ, but their choice is not observable to me. The shape of
both technologies and the rate and factor-bias of their shift over time is estimated jointly with
the technology decision. I use the model to decompose aggregate productivity growth and find
that firm-level change in lean production plants is the most important contributor to aggregate
productivity growth for the industry, but it only appears after controlling for the technology
choice. In contrast with previous results in the literature, relocation of resources between plants
is only the second most important effect. Labour productivity growth at lean plants is driven by
increased capital use and capital-biased technical change. In mass production plants, on the other
hand, almost all labour productivity advance is the result of Hicks-neutral technological growth.

Traditional productivity measures suggest that the automobile industry enjoyed a con-
siderable productivity improvement since the 1980’s, the period when the first Japanese
producers entered the industry in the U.S. The number of vehicles produced per worker, an often
quoted statistic, is on average higher in Japanese transplants than in plants owned by American
producers. Researchers have concluded that entry of more productive plants caused industry-
wide productivity to increase. Compositional changes at the intensive margin—relocation of
shares between active plants—and the extensive margin—plant turnover—are thought to be the
principal sources of aggregate productivity change.

167



168 REVIEW OF ECONOMIC STUDIES

FIGURE 1

Two stylized facts: (1) average vehicles produced per worker for the industry increased significantly between 1980 and
1996 and (2) many Japanese plants entered right before the acceleration in (labour) productivity growth

At the same time, a largely separate literature claims that the entrants produce with a
different technology, dubbed lean, or modern, manufacturing. Characteristics of lean production
are team work, less standardization, flexible equipment, decentralization of decisions, less
emphasis on scale economies, and increased flow in the production process.1 Heterogeneity in
technology is explained by the existence of twosystemsof production, lean and mass, each
experiencing technological change at different rates and possibly different factor-bias. In the
estimation, I allow for both technologies to coexist in the sample, but it would be overly restrictive
to assume that the technology of a plant is exogenous. Firms decide what technology to employ
at each plant, but the choice is not directly observable to me. I use observable features of the
production process to predict the technology each plant is operating with.

Both stylized facts—aggregate productivity growth and entry by Japanese plants—are
depicted in Figure 1. A popular measure of labour productivity, vehicles produced per worker,
is calculated using all firms in the data set. Some researchers have concluded from Figure 1 that
entrants are more productive and that productivity growth is driven by compositional effects.
This is premature, because other effects could explain the increase in labour productivity as
well, for example biased technological change in existing plants that use the old technology
or technology switching that provides a one-off productivity increase for the plants involved.
If I simply calculate labour productivity separately for plants built before and after 1982, as
in Figure 3, the productivity increase is mostly situated with old plants. This casts doubt on
explanations that focus solely on the entrants and compositional effects. The model I propose
allows me to explicitly address a number of questions. Do Japanese-owned plants experience
higher rates of productive growth than American-owned plants? Are the production technologies
really different and in what way? What is driving aggregate productivity change in the industry?

A myriad of factors influence the number of vehicles produced per worker for the industry
as a whole. The emergence of lean technology caused a major shift in production paradigm.

1. Many articles from the international motor vehicle program (IMVP) have described in great detail how
Japanese plants differ from their American and European competitors along several dimensions. The program has
generated more than 328 working papers since 1986. The book by Womack, Jones and Roos (1990) presents several
findings of the program.
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Some researchers argued that imitation of the technology used in transplants by incumbent
plants led to a one-time productivity gain. Because firm-level changes have to be aggregated,
changes in weight play a role as well. If resources are relocated from below to above average
productive plants, the industry can advance without any productivity growth at the plant-level.
Labour productivity can also be misleading. Relative factor prices changed significantly from
1963 to 1996, which can lead firms to choose a different combination of inputs, even without
any change in technology. Estimating technological change at the firm-level as a shift in the
production function takes input substitution into account. The rise or decline of one technology
can also have compositional effects, because technologies might differ in rate and factor-bias of
technical change. Disentangling the underlying effects is necessary to make robust conclusions
about the most important determinants and evolution of productivity in the industry.

The task is complicated by the basic unobservability of technology. Unobserved
heterogeneity in productivity levels introduces a potential simultaneity bias, because plants
choose inputs conditional on their own level of productivity. I use a structural model of
technology and input choice to control for both unobservables. I exploit the sequential nature
of input choice together with distributional assumptions to control for unobserved productivity.
A plant is assumed to make an explicit choice between both technologies before production
starts. In the consequent operation, the input tradeoffs a plant faces and technological change
it experiences are determined by the technology chosen before. Knowledge about the assembly
process is used to construct a production function that can capture the most important differences
between both technologies. Extra data are collected to control explicitly for other important
effects, such as capacity utilization and price-setting.

I constructed a new and comprehensive data set of automobile (and light truck) assembly
plants in the U.S. Input measures are obtained from the longitudinal research data set (LRD),
from the Bureau of the Census. It provides reliable input statistics, because all plants are legally
required to report the information. Variations in capacity utilization distort the relationship
between measured input levels and the actual services a plant derives from them. Explicitly
modelling and observing the number of shifts a plant is operated can control for it. An advantage
of the automobile industry is the existence of a well-defined unit of output, a vehicle. I collected
actual production volumes to avoid using deflated sales or value added as output measure, which
contain the effects of price-setting. Data on the type of vehicle assembled, ownership, and the
timing of changeovers,2 are used to proxy the attractiveness of each technology or the cost of a
technology change.

The two technologies I estimate differ significantly and in a meaningful way. The mass
technology exhibits constant returns to scale and has a higher capital and labour share, but
lower costs related to operating a shift. The technology identified as lean production, experiences
decreasing returns to scale, but increasing returns to shifts. The elasticity of substitution between
capital and labour and the own-price elasticities are significantly larger for the lean technology.
These findings coincide with the notion that lean manufacturing is more flexible and relies less on
standardization. The rate and factor-bias of technical change for each technology are identified
separately. Lean production experiences a relatively lower rate of Hicks-neutral productivity
growth and a significantly higher rate of capital-biased, labour-saving, productivity growth.
Labour productivity growth for mass producers is mainly driven by Hicks-neutral productivity
growth. For lean producers, capital-biased productivity growth and an increase in capital are the
two most important contributors to labour productivity growth.

2. A plant undergoes a changeover before a substantially different vehicle can be assembled at a plant. These
changeovers are accompanied by changes in the assembly line and the replacement of a substantial portion of the capital
stock.
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The lean technology has also become more popular over time. It is the result of new plants
being more likely to enter with the lean technology and existing plants switching technologies,
which is more likely in changeover years, when switching costs are lowered. Given the higher
returns to scale associated with mass production, it is optimal for some plants to stick with
the mass technology, especially if they produce only trucks and if model changes are rare.
Decomposing industry-wide labour productivity growth illustrates the prime importance of plant-
level growth in lean plants, although relocation of resources from mass to lean producers also
accounts for a significant portion of the aggregate growth rate.

The next section provides an overview of the production process in the automobile assembly
industry, which motivates the production function I adopt. The empirical strategy to identify both
technologies and to control for unobserved productivity differences is described in Section 3.
The timing of decisions and productivity shocks in the model are also described there. Section 4
contains a description of the plant-level data set and motivates the existence of two technologies.
The likelihood function is derived in Section 5, which also contains the estimation results. In
Section 6, I derive some conclusions about the evolution of productivity growth in the industry.

2. PRODUCTION AND PRODUCTIVITY IN AUTOMOBILE ASSEMBLY

The automobile assembly industry has not been a stranger to productivity growth or changes in
technology. Henry Ford revolutionized the industry when he introduced the moving assembly
line in 1913. He exploited returns to scale by ever-increasing specialization throughout the entire
production process and achieved enormous cost reductions. Standardization of components and
tasks and a limitation of model variety led the industry to operate branch assembly plants close to
population centres, supplied by large component plants located in the Detroit area. Each assembly
line produced only one model and inventories at dealerships were used to smooth production,
allowing plants to operate as close to optimal scale as possible. Within the assembly plant, each
worker or machine performed a single task. Little employee training was required and the focus
was on standardization at all levels.3

After the Second World War, Japanese producers started to produce automobiles
commercially.4 The specific domestic situation led them to develop a production process that was
markedly different from the American model. The closed labour market, labour laws introduced
during the American occupation, and a major strike after mass layoffs at Toyota in 1949, led
to the establishment of quasi-lifetime employment. Lack of skilled workers made it necessary
for companies to train employees extensively, which was only incentive compatible with low
worker mobility. Lack of capital motivated manufacturers to shift part of the development
of new components to suppliers. A more integrated supply chain was a natural complement,
evolving into just-in-time delivery of components and lower inventories. The scarcity of capital
also forced producers to adapt equipment to perform multiple tasks, instead of standardizing
operations and tasks performed by employees and machines. As a result, workers became less
interchangeable and work was organized in teams. Gradually, the need to perform multiple tasks
made machines more sophisticated, with more scope for capital-biased technological progress.
The domestic market was small and different groups of customers demanded vastly different
vehicles. Small scale production combined with flexibility in assembly and design were features
of lean production from the start. Assembly plants often produced more than one vehicle and
changeover times were significantly shorter than in mass production plants.

3. Rubenstein (1992) provides an overview of the development of the industry in the U.S.
4. The description of lean production draws on the book by Womacket al. (1990).
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Although the actual operation of an assembly plant and the organization of the supply
chain and vehicle development differs significantly between mass and lean production, both
systems share some important characteristics. Eiji Toyoda, who oversaw the development of
the Toyota Production System,5 visited the Ford Rouge assembly plant in Detroit in 1950.
Ford engineers made the reverse journey in 1981, visiting Mazda’s main production complex
in Hiroshima, which was modelled after Toyota city. Both systems operate with a moving
assembly line, organize work in 8 hour shifts, install new capital and change models over the
summer, and outsource the majority of components. A widespread misconception is that mass
production plants make a vehicle from scratch, while lean plants simply bolt together imported
components. Both production systems rely to a similar extent on outsourced components and
the degree of outsourcing only increased after the sample period, with the recent trend towards
modularization.6 Americanfirms differ from their Japanese competitors by a greater extent of
vertical integration. As a result, American assembly plants receive more components from in-
house suppliers and they are more integrated and outsource less at the firm-level. There has been
a trend in the industry to rely more on outside firms for components, but this had little impact on
the activities carried out at the assembly plant.

To decide on the functional form of the production function one should bear in mind that it
represents a technological relationship between physical output and physical inputs. In the data
set, I only observe the value of material input, which displays two trends. The (value of) material
input per vehicle

( PmM
Q

)
increases significantly over the sample period. At the same time, the

material–sales ratio
( PmM

Pq Q

)
remained virtually constant. Quality upgrading of vehicles, through

higher quality components, provides one explanation consistent with both observations. Newer
cars use better fabric, better quality paint, more powerful brakes, etc. The amount of intermediate
inputs per vehicle remained constant, but the quality and (real) price increased over time. This
is consistent with the observed increase in price for the final product. The real price per vehicle
increased from $6000 to $13,000 (in 1987 $) over the sample period. An evolution in outsourcing
activities provides an alternative explanation for the two stylized facts. The use of more material
inputs in the assembly process can explain the upward trend in the material–vehicle ratio. To
reconcile this with the constant material–sales ratio, the price increase for vehicles has to outpace
the price increase for materials. We do not find evidence for such a trend at all.7

I adopt the first interpretation, quality upgrading with a constant amount of material inputs
per vehicle. The volatility of the material–sales ratio is small, compared with the volatility of
capital or labour input, providing additional support for the assumption of constant material input
per vehicle.8 The production function is Leontief, allowing no substitution between materials
and other inputs, but the proportion of material input is allowed to vary across technologies.
Most components or subsystems, such as the engine, transmission, brake system, or electrical

5. Credit for devising the Toyota Production System, the prototypical lean production model, generally goes to
Taiichi Ohno, the chief production engineer when Eiji Toyoda was president of the Toyota Motor Company.

6. Only in recent years do we observe the exact activities carried out at each plant, see Harbour and Associates
(1999). Surprisingly, Japanese-owned assembly plants are marginally less outsourced.

7. This explanation faces an additional problem if the capital–labour combination to assemble different sub-
components of equal value differs. In that case, the production function depends on exactly which activities are
outsourced and no stable material aggregate exists. Without observing the actual material inputs, it would be impossible
to remedy this problem.

8. I use the following formulas to evaluate the volatility of the material–sales ratio over time and across plants:
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, and similarly for labour and capital (plants are

indexed by j = 1 . . . J, time by t = 1 . . . T). These measures reveal that capital–sales is six times more volatile than
material–sales and labour–sales is four times more volatile. In addition, the difference between material volatility across
plants hardly exceeds the volatility over time for a given plant.
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components, are outsourced to in-house suppliers or outside firms, and simply installed at the
assembly plant. Production for plantj producing at timet with technologyi is governed by the
following relationship:9

Q j t = min

[
α′0

i

(
M j t

Pi j t

)αm
i

, Q̄ j t e
ε

q
i j t

]
. (1)

The first part of equation (1) relates output to the volume of material inputs, obtained by
dividing the observable value of materials by a price index,

Pi j t = ep0
i +θm

i t+εm
i j t . (2)

The index captures quality upgrading of components over time (θm
i ), which can vary across

technologies. For example, over the sample period most manufacturers substituted cheaper drum
brakes for more expensive, but higher quality, disc brakes. The component cost per vehicle
increased and it is not captured by price deflation, because both brakes are different goods. At the
same time, the amount of material input per vehicle remained constant (four brakes per vehicle)
and assembly time also did not change.εm

i j t is a stochastic component that is unobservable to the

econometrician.10 The coefficient on materials and the price index are estimated, but the main
interest is in the other coefficients of the production function.

The second part of the production function links observed output (Q) to planned output (̄Q).
Firms in the industry operate in a decentralized fashion. The headquarters of the firm decides on
a production volume for the plant, based on market demand predictions. The plant manager tries
to satisfy the production requirement at minimal cost.Ex post, the actual production volume will
differ from planned output, which is used to decide input levels. I model this as the realization of
an independent shock to production (ε

q
i j t ). The fixed-coefficient technology for materials makes

it reasonable to assume that materials are determined after the realization of the production
shock.11

Planned output is a function of capital, labour, shifts, and productivity, which are not all
decided simultaneously. In practice, a plant operates an 8 hour shift or stands idle. Whenever it
operates, the entire assembly line or all of the capital stock is used. New investment is generally
installed in the summer, when the assembly line is retooled for the new model and the plant does
not operate for a couple of weeks. During the year, the plant manager decides how many shifts
to operate the assembly line and at what speed, which determines the labour input required. In
effect, the plant manager has two degrees of freedom, number of shifts and line-speed, and can
satisfy the production requirement using different combinations of shifts (capital use) and labour
input. The extent to which more workers are needed to increase line-speed, is determined by
the elasticity of substitution between labour and capital. Workers are not laid off when the line is
idled, but I observe actual hours worked and, therefore, variations in actual labour input. Because
the assembly line has a minimum speed to operate efficiently, it is often advantageous to idle the
plant for a number of shifts. Capacity utilization at the extensive margin varies significantly
between plants and across time periods.

9. Benkard (2000) also uses a Leontief technology to model the production function in aircraft production,
motivated by the impossibility to substitute between engines and other inputs.

10. It does not matter whether a plant observesεm
i j t or not, because it has no control over the amount of materials

to use. Output is determined exogenously (at the firm-level) and material input is linked to output through a constant-
coefficients technology.

11. It is straightforward to adjust the model to make material input choice precede the production shock. The only
change to the estimation would be the introduction of a positive correlation between the errors in the production and
material equation.
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Total output is given by an output per shift function multiplied by productivity and the
number of shifts the plant is operated,

Q̄ j t = S
αs

i
j t fi

(
L j t

Sj t
, K̂ i j t

)
eθ

n
i t+ωn

i j . (3)

The scale factor for the number of shifts has a factorαs
i , to capture returns to shifts. This

coefficient can be smaller than one if, for example, running more shifts reduces maintenance
time, leading to more machine breakdown and lower production per shift. It can be larger
than one if there are positive spillover effects between shifts, for example shared overhead or
reductions in start-up time. Output per shift is a function of labour per shift and efficiency units of
capital, and is multiplied with a plant-specific productivity factor. The shape offi (·) determines
the technological substitution possibility between capital and labour for technologyi .

I adopt the translog specification for the per shift production function. It is a flexible
functional form which allows identification of Hicks-neutral and capital-biased technological
change and it also does not restrict the elasticity of substitution to be the same for different
technologies:

log fi = αi + αl
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i + β lk
i l k̂i ,

wherel is the logarithm of labour per shift and̂ki are efficiency units of capital, also in logarithms
(k̂i = k + θk

i t + ωk
i ).

The technology a plant produces with—as captured by the production function—is a
relationship that determines the maximum output that can be obtained from a bundle of physical
inputs. Some plants produce more output with the same amount of inputs. These plants can still
be considered to operate with the same technology, although with a different level of productivity.
Input substitution possibilities are identical, but the production frontier is shifted radially. Hicks-
neutral differences between plants are captured byωn

i j and neutral productivity growth,θn
i ,

affects all plants equally.
In this industry, it is often assumed that a significant part of technological progress comes

through improved machinery and equipment. Over time, it changes the input tradeoff embodied
in the technology. In mass production, machines perform a single task, while lean technology
relies on flexible equipment. Both potentially experience different rates of technological change.
Capital-biased productivity growth, affecting all plants that produce with technologyi similarly,
is captured byθk

i . In addition, I allow for a plant-specific shock to productivity,ωk
i j t , that

is proportional to its capital stock. A plant observes all four productivity terms and chooses
(variable) inputs accordingly.12

In equilibrium, both parts of the production function (1) will hold with equality. Substituting
the price index for materials (2), planned output (3), and efficiency units of capital, taking
logarithms and rearranging gives two estimating equations,

(IIIa) q j t = αs
i sj t + log fi
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(IIIb) m j t = α0
i +

1
αm

i
q j t + θm

i t + εm
i j t .

All coefficients vary by technology, which is indicated by the indexi . A question remains
how many technologies to allow. At one extreme, one could postulate that all plants in the
sample produce with the same technology. All observed heterogeneity would then be attributed to

12. A plant chooses capital knowing three of the productivity terms, but notωk
i j t . After the new investment is

installed, it makes a production run and learnsωk
i j t . Variable inputs and shifts are only chosen afterwards and a plant will

choose them conditional on all four productivity terms.
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measurement or sampling error. At the other extreme, one could assume a different technology
for each plant and use random coefficients. This approach has not yielded satisfactory results,
see Mairesse and Griliches (1990). Diamond, McFadden and Rodriguez (1978) show that it is
impossible to identify the bias in productivity growth from the elasticity of substitution using
only time-series variation. I take an intermediate position by allowing two—but only two—
technologies. The trade press takes this stance by drawing a sharp distinction between lean and
mass production. Milgrom and Roberts (1990) provide theoretical support for such restriction.
They describe modern manufacturing as a set of activities that exhibit complementarities. The
marginal product of adopting the new technology for one activity is increasing in adoption on
other dimensions. It makes intermediary systems that are composed of elements from the old and
new systems unstable.13

Because the technology a plant produces with is unobserved, it is not possible to rely on
the theory of index numbers to obtain productivity measures. I estimate the production functions
econometrically, which is flexible enough to allow for variable returns to scale and variations in
capacity utilization. Two sets of coefficients, one for each technology, and an equation governing
the technology choice are estimated jointly. In the next section, I describe how to control for
unobserved productivity differences,ωn andωk, and how the technology choice is modelled.

For the automobile industry, Friedlaender, Winston and Wang (1983) were the first to
estimate a firm-level production function. They assumed one homogeneous technology, although
one of the four American producers was excluded because its production technology was thought
to differ substantially. Krafcik (1988) used detailed plant-level data, also enforcing the one-
technology assumption. In the discussion of his results, as in many other IMVP studies, Japanese-
owned plants are treated as a separate class that have noticeably higher productivity. One study,
Griffith (1999), addresses productivity differences between domestic and foreign plants in the
U.K. explicitly, but the difference is restricted to affect only the constant term in the production
function. Finally, Fuss and Waverman (1992) estimate an industry-level production function for
four countries, paying particular attention to capacity utilization.

3. EMPIRICAL STRATEGY

3.1. Timing

To estimate both equations generated by the production function, derived in the previous section,
it is necessary to control for unobserved productivity differences and the technology choice. I
exploit the timing and level (plant vs. firm) of decision making in the industry, using observed
decisions to infer unobserved variables. It does entail a number of restrictions on how firms
operate and it suggests a maximum likelihood estimation procedure. In Section 3.2, I discuss how
to control forωn

i j using plant-fixed effects and forωk
i j t by inverting the first-order conditions for

variable input choice. In Section 3.3, an explicit model of technology choice is developed, which
generates a framework for estimation. An outline of the model, with the timing of decisions and
when errors are realized, is provided in Figure 2.

When a plant is built, the firm makes a technology choice, mass or lean (i =M orL). The
constant component of productivity (ωn

i j ), known to the plant, but not to outsiders, is realized
next, before any production decision is made. In the following years, mass technology plants have
the option to adopt the lean technology, at which point a new plant-level productivity term gets

13. The complementarities were apparent in the preceding discussion of lean technology. Providing extensive
training is only optimal if worker mobility is low. It also makes it easier to use flexible equipment and organize work in
teams. An integrated supply chain is easier to achieve if suppliers are involved in R&D, and only then is a just-in-time
inventory system feasible.
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FIGURE 2

Timing of decisions and errors

realized.ωn
i j does not vary over time. Planned output (Q̄) is determined at the next stage. Plants

get the production requirement handed down from headquarters and minimize costs subject to
the production constraint. The first decision made at the plant-level is investment (I ). The annual
choices of output and investment are not modelled explicitly. Before production starts, a plant
tests the assembly line and learns the productivity of the capital stock (ωk

i j t ), which determines
the efficiency units of capital that enter the production function. The optimal choice of labour per
shift is a function of capital productivity and it generates the first estimating equation. The final
stage is actual production. The technology generates two estimating equations, already derived
in Section 2. Actual output (Q) will differ from planned output because of anex postshock to
production (εq). Finally, material input (M) is proportional to the actual output produced and is
influenced by a price shock (εm).

There are two sources of unobserved productivity differences in the production function. I
control for both to avoid simultaneity bias. The first component (ωn

i j ) is constant over time and

captured by plant-fixed effects. The second component (ωk
i j t ) varies over time and represents a

shock to capital productivity. Variable inputs are only chosen after the actual productivity of the
capital stock is observed. Inverting the first-order conditions gives an expression forωk

i j t in terms
of observable variables. The following table summarizes the primitives of the empirical model,i
indexes technology (M or L) and thej andt subscripts for plants and years are suppressed.βi

represents the technology-specific parameters to estimate.

decision equation explanation
(I) p = Pr(i =M;βi ) → technology choice probability

(II) gi

(
L

S

)
= gl (wn

i , K , t;βi )+ ωk
i → f.o.c. for variable inputs

(IIIa) Q =gq(S, L , K , t, ωk
i , ω

n
i ;βi )+ ε

q
i → ωk

i from (II), ωn
i is plant-fixed effect

ε
q
i independent of inputs,ωk

i , andωn
i

(IIIb) M = gm(Q, t;βi )+ εm
i → εm

i realized at the very end

The technology decision (I) is used to derive the probability a plant produces with
either technology in each year. The labour per shift decision (II) and the production
function (III) provide three estimating equations. The equations imply a distribution for each
endogenous variable conditional on technology. The likelihood function for the unconditional
joint distribution is obtained by multiplying the probability for each technology by the joint
conditional distribution for the three endogenous variables. I assume that the three error terms—
εk

i , εq
i , εm

i —are independently distributed and exogenous to the R.H.S. variables. I derive the
first-order condition (II) and the probability of technology choice (I) in the remainder of this
section. The exact functional forms for equations (IIIa) and (IIIb) were derived in Section 2.
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3.2. Unobserved productivity differences

The level of productivity is only defined relative to a particular production function. Only
the productivity levels of plants that produce with the same technology can be compared
meaningfully. Productivity growth, on the other hand, is always well defined. It measures the
shift of a production frontier over time. I will focus on comparingθn

i andθk
i across technologies,

controlling for differences inωn
i andωk

i in the estimation. In the long run, the technology with
the highest productivity growth rate will dominate.

A problem that studies of the automobile industry have not adequately addressed is the
endogeneity of unobserved productivity differences. Plants choose inputs with knowledge of
their own productivity level generating simultaneity bias. Least squares estimation of the pro-
duction relation is inconsistent and instrumental variables are the traditional solution. In this
industry, the dependency of plant decisions on productivity can work through shifts or hours
worked if headquarters systematically allocate higher production volumes to plants with higher
productivity, even conditional on the installed capital stock. If higher productivity plants are bet-
ter able to use the entire range of assembly line-speed, there can be another effect of productivity
on labour per shift. Exit, on the other hand, is unlikely to be correlated with productivity. Almost
all plants that closed during the sample produced compact cars. The (exogenous) evolution of
demand, more than low plant-level productivity, will determine which plants are closed.

Blundell and Bond (2000) demonstrate that in the context of the production model it is
hard to come up with powerful instruments. The stochastic frontier literature uses distributional
assumptions to integrate out unobserved productivity, but this is rather restrictive. Another
solution is to use a behavioural equation to obtain an expression for the unobserved productivity
in terms of observable variables. For example, Olley and Pakes (1996) invert the investment
function non-parametrically to substitute the productivity term from the production function.
Levinsohn and Petrin (1999) follow a similar approach, but they use material inputs instead of
investment. My solution is similar, but by inverting the labour per shift equation, I obtain an exact
expression forωk

i , avoiding the non-parametric approximation.
Controlling for the Hicks-neutral plant-level productivityωn

i j is straightforward because it is
assumed to be constant over time. I include plant dummies in the production function, that serve
a dual purpose. They control for the endogeneity of productivity and they allow to pool plants,
using the number of vehicles produced as output measure. Controlling forωk

i , which varies over
time, requires more work. Inverting the first-order conditions for the variable input choice will
give me an expression for unobserved capital productivity. Most productivity studies using a
translog production or cost function rely on Shepard’s lemma to derive the factor-share equations,
to aid in identification. The introduction of shifts as choice variable and the fact that plants choose
labour and capital at different times, makes it necessary to solve the cost minimization problem
explicitly.

As already mentioned in Section 2, every period a production plan is handed down from
headquarters. Capital, output and technology are not decision variables at this point. The plant
chooses labour and shifts to satisfy the production requirement and to minimize variable costs,
which are twofold. First, the wage bill is proportional to the number of shifts and the average
number of hours worked on a shift. Second, there are fixed and variable costs of operating a
shift. The existence of labour unions complicates the tradeoff between labour and shifts the plant
makes, because unionized plants save only a fraction of wages when they reduce labour input.
Labour contracts negotiated in this industry specify that a percentage of the normal wage is paid
even when plants are idled. Plants only take the variable portion of the wage into account and
I multiply the observed wage by a factor that lies between zero and one (δ). For non-unionized
plants, this fraction is normalized to be one.
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Costs associated with operating a shift are not observed directly, but I estimate a fixed
component (µi ) and a component proportional to capital (ρi ).14 Both components are equal
across plants, but potentially differ across technologies. Many plants idle the capital stock
for part of the year, which indicates a positive marginal cost of operating the capital stock.
Complementary inputs (labour and energy), depreciation in-use, or maintenance cost are likely
to influence the cost of operating a shift.

A plant minimizes costs, while satisfying the production requirement in expectation.15

min{L ,S} S×

(
wδ

L

S
+ ρi K + µi

)
(4)

s.t. Q = Sα
s
i fi

(
L

S
, Keθ

k
i t+ωk

i

)
eθ

n
i t+ωn

i +ε
q
i

E(Q) ≥ Q̄

δ = 1 if plant is not unionized

δ ∈ [0,1] if plant is unionized

K ≤ K̄ .

In the objective function,w is the observed wage rate andδ is the fraction of the wage that is not
paid when a unionized plant is idled.L

S is the average hours worked per shift by all employees.
K , the capital stock, is fixed at this point.S is the number of shifts the plant is operated over the
entire year. Only the relevant part of the production function is repeated.

The model allows for the large under-utilization of capital often noted in the automobile
assembly industry. If capital has a positive operating cost (ρi > 0) and the elasticity of
substitution between capital and labour is finite, it can be advantageous to idle the plant for
some shifts. A manufacturer can produce the same amount by employing more workers on each
shift and running fewer shifts to save on capital depreciation, maintenance, and energy. This
can only be accomplished by running the assembly line at a higher jobs-per-minute (JPM) rate,
made possible by the increased labour input. Since reported capacity numbers for the industry are
calculated as potential output, assuming 10 shifts per week and the initially reported JPM rate,
this substitution behaviour will show up as lowered capacity utilization. The tradeoff between
labour and capital is determined by the operating cost per shift (ρi ), the returns to shifts (αs

i ), and
the elasticity of substitution between capital and labour. All three factors are identified separately
in the model.

To obtain an estimating equation, I solve the minimization problem and rework the first-
order conditions. The Lagrangian to minimize is

LG(L , S) = wδL + (ρi K̄ + µi )S+ λ

[
Q̄ − Sα

s
i fi

(
L

S
, Keθ

k
i t+ωk

i

)
eθ

n
i t+ωn

i

]
,

where L and S are decision variables. The fixed cost per shift and scarcity of resources will
guarantee thatK = K̄ andE(Q) = Q̄.16 The first-order conditions are:

14. There is no unique solution for the minimization problem if returns to scale for the per shift production function
are equal toαs

i . With excess capacity, a plant can produce the same output int shifts, usingL hours per shift, or using
all t L hours in one shift and employingt times as much capital. Introducing a fixed cost per shift guarantees that a plant
will always use the entire capital stock if it operates a shift.

15. While this cost minimization problem may not be profit maximizing for the firm, it reflects the constraints and
incentives the plant manager faces.

16. The only variable in the problem a plant does not observe at this point is theex postshock to production,εq
i .

The error term is assumed to be i.i.d. normally distributed and is orthogonal to the labour and input choice.
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wδ = λeθ
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Dividing both equations and rearranging gives

wδL

wδL + S(ρi K̄ + µi )︸ ︷︷ ︸
λi

=
1

αs
i

∂ log fi (
L
S, K̂ )

∂ log( L
S)

. (5)

The expression on the left is the labour share in variable costs. It is not directly observable
because the parametersρi , µi and δ have to be estimated. The optimal labour–share ratio in
equation (5) does not depend on the plant-specific neutral productivity term or the shock to
production.

Using the translog specification forfi I find

(II)
wδ L

S

wδ L
S + ρi K̄ + µi

− β l
i log

L

S
= αl

i + β lk
i (k + θk

i t + ωk
i ).

The dependent variable,L
S, is a nonlinear function of the disturbance,ωk

i . I use this expression
to substituteωk

i in the production function, allowing for consistent estimation of equation (IIIa).
In addition, I estimate equation (II) directly, to aid in identification.

3.3. Unobserved technology choice

To compare productivity growth for the lean and mass technology, I need to obtain consistent
estimates for the parameters in both production functions. All three previously derived estimating
equations are conditional on the technology choice. Simply regressing output on inputs cannot
produce consistent estimates, because the technology choice is not observed directly. Only in
recent years are the exact activities carried out at each plant observed. In addition, much of the
difference between technologies is in the organization of work or the product flow, which are
hard to measure.

The easiest solution would be to separate plants in two groups using an observable
characteristic. A Chow test for structural breaks can be used to test whether the production
technology is different for plants in both groups. The most straightforward criterion is to equate
lean technology with plants that were built most recently. Figure 3, however, illustrates that most
of the productivity growth is situated in the older plants. The newer, mostly Japanese, plants enter
with a higher level of labour-productivity, but they increase productivity at a slower pace.

Performing similar exercises using time, nationality of owner, or other variables supposedly
correlated with the technology choice,e.g. level of outsourcing or inventory levels, to separate
plants in two groups, the null hypothesis of identical technologies can always be rejected.
Unfortunately, the coefficient estimates for parameters in the production function differ for
different criteria to split the sample. There is evidence that some mass technology plants adopt
the lean technology during the sample period. It is also not certain that the newer, lean technology
strictly dominates mass technology. In particular, the mass technology is thought to be better at
exploiting scale economies, making adoption of the new technology not guaranteed. A more
systematic method to separate plants, allowing for technology switching, is needed.

One possibility is to use an endogenous switching model as in Dubin and McFadden (1984),
using a selection equation for technology that is a linear combination of observable variables.
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FIGURE 3

Evolution of vehicles produced per worker for new and old plants

I exploit the fact that the initial technology choice happens only once and that switching is
rare. The probability that a plant operates with one technology depends to a large extent on
the technology employed in the previous period. I estimate the initial technology choice and the
probability for technology switching, instead of estimating the probability for the technology in
each year directly. Beard, Caudill and Gropper (1991) also model technology transitions, but they
fix the switching probability to a constant. I allow the probability of switching to differ across
plants and over time as a function of observable variables and estimate the transition probabilities
jointly with the production function, derived earlier.

A crucial assumption is that the choice of technology is made at the firm-level, before
production starts. It makes the technology choice orthogonal to the plant-level productivity
factors and error terms. The firm makes a net present value comparison between both
technologies and chooses the technology that gives it the highest discounted profits, taking
expectations and switching costs into account. Building a structural model to explicitly model the
comparison is too complicated. A myriad of effects enter this decision: strategic considerations,
pricing of a durable good, the joint decision for many plants, etc. Specific assumptions about
the expectations of all exogenous variables and the optimal response functions for all choice
variables would be needed.

Instead, I take a reduced-form approach to control for the technology decision and assume
the probability for a technology is a function of observable variables. The probability that plantj
enters the sample with the older, mass technology is17

(I′) ψ j t =
1

1 + exp(Wj t η)
.

17. Equation (I′) can be rationalized by a selection problem in the first period:

i( j t ) =

{
M if Wj t η < ε1

L if Wj t η ≥ ε1

whereε1 follows the extreme variable distribution andt is the entry year for plantj . TheWj t η aggregate captures the
difference in net present value for the firm from operating plantj with the lean instead of the mass technology.
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TABLE 1

Transition probabilities between technology

(I)

Time t
M L

M p j t =
1

1 + exp(Z j t γ )
1 − p j t =

exp(Z j t γ )

1 + exp(Z j t γ )
Time t − 1

L 0 1

Variables inW capture the relative profitability of the lean vs. mass technology. The evolution
of both technologies, experience the firm has operating each technology, and the market segment
for the model a plant produces, are likely to be important determinants. For example, it is argued
that lean production is better suited if demand is volatile or for production at a lower scale. The
trend towards more cars per household has led to a larger demand for speciality or niche vehicles,
making the lean technology more popular over time.

A firm makes the initial technology choice before a plant enters the sample. In addition,
at the start of each year, it has the option of switching technology. The data spans 27 years,
generating 227 possible paths for technology. It is possible to estimate a model that allows plants
to shift freely using the EM algorithm, as illustrated in Hamilton (1989). It necessitates fixing the
transition probabilities between technologies to be constant across plants and over time. I decided
to be less flexible on the direction of change and more flexible on the transition probabilities,
making them vary over time and across plants. To estimate the model, I assume that lean
production is an absorbing state, which reduces the number of possible paths for technology to
28. Plants built before the lean technology was available can end up with the “wrong” technology
for their characteristics. Only these plants will opt to switch and incur switching costs. The
transition probabilities are a function of observable variables, just like the initial probability
choice in (I′). The likelihood will be constructed from the entire time path of the endogenous
variables, instead of year by year.

The transition probabilities are illustrated in Table 1.18 Variables in Z determine the
probability a firm finds it more beneficial to produce with the lean technology in plantj ,
rather than sticking with the mass technology. The same demand variables as inW influence
this transition probability. In addition, I incorporate a dummy for changeover years to capture
switching costs. When a substantially modified model is introduced, a plant has to adjust a large
part of the assembly line. This is likely to be a good moment to make the technology switch as
well, because much of the capital stock has to be replaced anyway.

4. DATA ON ASSEMBLY PLANTS

4.1. Observed variables

From the preceding discussion it is clear that three sources of data are needed: variables
characterizing the technology choice, output quantities and input levels, adjusted for intensity
of use.

18. Underlying the probabilities in (I) is a different selection problem:

i( j t ) =

{
M if [i( j t−1) =M& Z j t γ < ε2

]

L if [i( j t−1) =M& Z j t γ ≥ ε2
] or i( j t−1) = L,

whereε2 also follows the extreme variable distribution and plantj entered before yeart .
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The principal data source is the LRD constructed by the Center for Economic Studies at the
Bureau of the Census. The data are collected from plant responses to the yearly Annual Survey of
Manufactures and the 5-yearly Census of Manufactures. Observations are plant-years and plants
are linked over time. Coverage includes all plants with SIC code 3711 (motor vehicles and car
bodies) for their main product. The data spans the years 1963, 1967 and 1972–1996.

Industry publications are used to supplement the LRD. These cover a smaller number
of companies and plants. Only statistics for plants owned and operated by one of the large
automobile or truck companies are available. Omitted plants are owned by smaller firms and
specialize in converting cars to limousines, trucks to campers, or they only make car or
truck bodies. In addition, the LRD contains some engine or component plants that produce a
large number of bodies or completed vehicles only sporadically.19 Seventy-four percent of the
observations in the LRD with SIC code 3711 could be matched to the data from other sources.
These plants represent 94% of the employment in the industry.

This data set provides reliable and complete input statistics. The labour input measure we
use is total hours worked at the plant. Hours worked by non-production workers are imputed
using their relative wage.20 Volatility in production combined with a high degree of unionization
have resulted in companies having a number of temporarily unemployed workers on their payroll.
Only actual hours worked are counted in labour input, although the amount paid to temporarily
unemployed workers is included in the labour costs. The input choice model explicitly recognizes
the different incentives unionized plants face and provides a method to control for unionization
in the estimation as well. Capital input is constructed from book values. An alternative measure,
using the perpetual inventory method, yielded almost identical results. It is deflated using the
capital goods deflator for the industry from the NBER productivity data set. Material input
includes raw materials and intermediate products, fuels and electricity. All are scaled by the
appropriate deflator from the NBER data set.21 In principal, energy could be included separately
in the production function. It was not done because it is smaller than 1% of costs for almost all
plants and already included in raw materials for some. Table 2 contains summary statistics for
the relevant variables.

The second piece of information needed is output. Most productivity studies use deflated
sales or value added as output measure, because actual production volumes are not generally
available. If a firm has price-setting power, price changes will erroneously be interpreted as
productivity changes. For example, if a firm produces subject to an inelastic demand, it can
increase sales by raising the price. Deflation by an industry-wide price index does not capture
the individual price movements. Because output and inputs do not change the increase in
“output” will be interpreted as a productivity gain.22 For a solution using specific assumptions
about competition and demand, see Klette and Griliches (1996). In a concentrated industry
like automobile assembly, price-setting is likely to be important. One example is the sale of
identical vehicles by different firms. All American producers have joint-ventures with Japanese
partners, assembling vehicles jointly and selling identical products under different nameplates.

19. Plants are classified according to the industry category of their main product. Some engine or component plants
assemble a limited amount of vehicles as well, which in some years can make up the majority of sales. This can result in
these plants being classified in SIC industry 3711 in some years.

20. Hours worked is directly observed for production workers, but only the total number of non-production workers
is known. Assuming that wages for non-production workers vary in proportion to hours worked, we can estimate the hours
they worked from the evolution of the ratio of wage per worker for production and non-production workers.

21. The NBER productivity data set is constructed by Bartelsman, Becker, and Gray, and is available on the
Internet athttp://www.nber.org.

22. Even if demand is not perfectly inelastic, sales will go down less than output after a price increase. If inputs
vary more or less in proportion to output, a price decrease will still be interpreted as a productivity gain.
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TABLE 2

Summary statistics for the automobile assembly industry
(1963,1967,1972–1996)

Variable Mean Standard deviation

Inputs
Total hours worked per shift 22,386 17,562
Total employment 4332 3133
Production workers (% of total) 0·86 0·05
Book value of capital (% of sales) 0·334 0·293
Materials–sales ratio 0·75 0·10
Energy–sales ratio 0·006 0·004

Output
Cars produced 181,780 92,076
Light trucks produced 130,547 81,637
Total vehicles produced 196,902 100,177

Other variables
Only-cars dummy 0·57 0·49
Only-trucks dummy 0·23 0·42
Cars and trucks dummy 0·20 0·40
Japanese ownership dummy 0·05 0·22
Changeover dummy 0·04 0·18
Annual capacity 237,095 83,904
Shifts operated (per year) 424 114
Union dummy 0·97 0·18

Number of observations 1358
Number of plants 78
Number of firms 17

Sources: LRD, Bureau of the Census, 2000;Ward’s Automotive; and
Automotive Newsweekly magazine (various years).

The Japanese model invariably fetches a higher price.23 I collected information on the number of
cars and light trucks produced by each plant. For the years 1985–1996 these data were obtained
directly fromWard’s Automotive. For the preceding years two data sources inWard’s Automotive
Yearbookare matched.24

The use of vehicles as output measure is not entirely without problems. The comparison
of plants that produce different vehicles is straightforward, as I include plant dummies in
the production function to control for constant productivity differences. It does take more
resources to build a luxury car than it does to build a pickup truck, but as long as the
substitution possibilities between inputs and productivity growth are similar, the parameters in
the production functions will be estimated consistently. The comparison over time is potentially
more troublesome, given the large improvements in quality cars and trucks have experienced
over the last decades. In so far as the quality improvement comes from purchased components,
it is controlled for in the model. Other sources of quality improvements are likely to bias Hicks-
neutral productivity growth downwards, assuming that they do not change the input tradeoff
a manufacturer faces.25 Unobserved quality improvements that are associated with one input

23. This price difference can be substantial. NUMMI, the joint-venture between GM and Toyota in Fremont, CA,
produces the Chevrolet Prizm and Toyota Corolla. Both models are identical, assembled from the same components on
the same assembly line. On average, the Prizm is sold for $3000 less than the Corolla, which is about 20% of the average
retail price. Some of this represents lower profits for Chevrolet dealers, but most of it is a factory rebate. Using deflated
sales or value added as output measure makes NUMMI look much more productive assembling Corollas.

24. Details about the calculations are available upon request. As a robustness check the calculated production for
1985 is compared with the information obtained directly. The correlation was a reassuring 0·99.

25. To get a sense of the magnitude of this effect, note that labour productivity growth averages only 1·3% per
year over the sample period using vehicles as output measure, while it is 2·5% using deflated sales.
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factor or only affect one technology have the potential to bias the production function estimates
and affect the parameters in the technology choice specification, but by their very nature there is
nothing I can do about it.26

The input and output statistics are augmented by variables that allow us to distinguish both
technologies. These include dummies for the type of vehicle produced and a dummy for Japanese
ownership. A dummy for changeover years will be used as a proxy for switching costs.27

Information on shifts is collected to account for capacity utilization. A major concern for
productivity measurement in this industry is the volatility in capacity utilization. The Harbour
report (Harbour and Associates, 1999) calculates assembly plant utilization rates for 1998, a
record production year, between 34 and 148%.28 Even though most of the capital cost is sunk
after it is installed, many plants choose to remain idle for part of the year. The tradeoff a plant
faces is to run few shifts, with many workers on each, or run a lot of them, with fewer workers.
The number of shifts to operate is an explicit choice the plant makes, resulting in endogenous
variation in capacity utilization. FromAutomotive Newsweekly magazine we obtained the
number of weeks a plant ran overtime, worked on Saturdays, and the number of weeks a plant
closed for vacation, for inventory adjustment, or for retooling and model changeovers. Using
these five measures, the total number of shifts the plants operated each year can be computed.

4.2. Identification of two technologies

Both the trade press and theoretical arguments support the existence oftwo technologies. While
the existence of two technologies is an untestable hypothesis of the model, a comparison of
the characteristics of the estimated two technologies with prior expectations on the differences
between lean and mass technology provides a validity check. Some descriptive evidence
consistent with the two technologies assumption is also presented.

I already mentioned that a Chow test for a structural break between two different samples
rejects homogeneity of technology, using a number of different criteria to sort plants. If the
technology choice were observable, both production functions could be estimated separately.
In practice, different criteria yield different sample splits and different production function
estimates. The intrinsic unobservability of the technology choice raises an identification problem.

The discussion of switching regressions in Reiss and Wolak (2002) illustrates that one needs
parametric assumptions on the unobservables to identify unobservable regimes. It is the non-
normality of the reduced form errors that determines to what extent different regimes can be
identified. Omitting the time dimension, the underlying structure of the economic model tells
me that in any year the empirical distribution of output given inputs can be factored into two
components:

f (q j t |X j t ) = Pr(i =M)h(q j t |X j t , i =M)+ Pr(i = L)h(q j t |X j t , i = L). (6)

If two unobserved technologies exist, the observed, empirical distribution will be the weighted
sum of two unobservable conditional distributions—conditional on technology choice—each

26. It does not imply that the introduction of machinery and equipment that improves accuracy in the assembly
process—and therefore the quality of output—necessarily leads to biased estimates, because all plants in the industry tend
to adopt better machinery when it becomes available. Plants differ to a greater extent in the variety of functions machines
and workers are expected to perform and in the way workers interact with machinery, both of which are unlikely to affect
quality directly.

27. Every 4–8 years a substantially improved or completely new model is introduced. In such changeover year a
plant’s downtime is substantially larger because of extensive retooling of the assembly line. A changeover year is likely
to be a good time to switch technologies as well, because a significant part of the capital stock already has to be replaced.

28. Capacity utilization can exceed 100% since plants can run more than two shifts a day, 5 days a week, while
capacity is calculated for regular operation.
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weighted by the probability a plant operates with that technology. Functional form assumptions
on the probability of employing each technology, Pr(i = M), will allow the untangling of the
different terms in (6).29 Even though it is possible to characterize the empirical distribution of
output given the inputs non-parametrically, it is unlikely to be of much economic interest. In order
to know how output responds to changes in exogenous variables one needs to know the partial
derivatives of each term in (6). Similarly, if we want to estimate the input substitution possibilities
or returns to scale that plants face, we need to distinguish the two conditional density functions.

While it is possible to identify the conditional densities solely using functional form
assumptions, as in Porter (1983), exclusion restrictions aid in identification. If we observe
variables that are correlated with the probability a plant operates either technology and if the
correlation between output and inputs differs depending on whether one conditions on those
variables or not, those variables will help identify the two conditional densities in (6). The
variables inZ and W in equations (I) and (I′) that are excluded from the production function
play exactly that role.

A validity check on the model will be whether the estimated characteristics of the two
technologies correspond to the characteristics that are generally attributed to lean and mass
production. For example, the results will show that the technology choice is correlated with
ownership. In particular, Japanese-owned plants are more likely to adopt the lean technology,
which is plausible. Consequently, if the correlation between output and the number of shifts
a plant operates differs between Japanese and domestically owned plants, it will be possible
to identify different conditional densitiesh(·|X,M) and h(·|X,L). In particular, lean plants
are thought to operate at a higher rate of capacity utilization, which will be interpreted in the
production function (3) as higher returns to shifts (αs

L > αs
M), which is borne out by the

estimation results.30 At the same time, returns to scale are expected to be lower for the lean
technology and we do find thatα̂l

L+ α̂k
L < α̂l

M+ α̂k
M. Combined with the higher return to shifts,

it will be optimal for lean producers to operate relatively more shifts and produce relatively less
output on each, requiring a lower line-speed and less labour per shift. Given that the amount of
capital to construct an assembly line varies proportionally less, the capital–labour ratio for lean
producers will be high. Mass producers, on the other hand, will run fewer shifts, but produce a lot
of output on each. To achieve this they will man the assembly lines with more workers, resulting
in a low capital–labour ratio per shift.

More support for the two technologies assumption comes from Figure 4, which plots the
distribution of an observable statistic: the capital–labour ratio per shift. It suggests, or is at least
consistent with, the existence of two technologies and the possibility that plants switch between
the two.

The left panels plot the non-parametric density for the ratio of capital to labour per shift in
the first 5 years of the sample.31 The right panels plot the distribution for the same graphs in the
last 5 years of the sample. The top panels contain the ratio for all plants and the bottom graphs
are limited to plants that remained in the sample continuously from 1963 to 1996. The ratio has
a bimodal distribution in both time periods and the popularity of each mode changed over time.
In the early years, most plants choose the low capital–labour technology, the left mode. In later
years, most plants prefer the technology with a higher capital–labour ratio, leading to an increase
in the right mode.

29. The likelihood function in the estimated model is more complicated than (6), because the entire time-path of
the endogenous variables is modelled, but the underlying idea is the same.

30. The coefficient estimates that are referred to in this section are in Table 3.
31. These graphs can be interpreted as smoothed histograms. An observation is the average capital–labour ratio

for a plant over the relevant 5 year period. Confidentiality considerations preclude me from reporting the underlying
statistics directly.
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FIGURE 4

Non-parametric distribution for the average capital–labour (per shift) ratio for different groups of plants

This increase in popularity for the capital-intensive technology in the top panels is consistent
with technology switching by existing plants, as well as with the entry of new plants that
predominantly prefer the capital-intensive technology. However, the pattern holds up in the
bottom panels. The same increase in the capital-intensive mode appears if the sample is limited to
plants that operated throughout the entire sample period. This is consistent with plants changing
their technology, which the model has to allow for.

Changes over time will help identify two sets of production function parameters. Comparing
the left and right panels in Figure 4 reveals that in the top and bottom panels both modes have
shifted to the right. The increased cost of labour has led all plants, regardless of the technology
they employ, to substitute workers for machinery. It is also true that the right modes, capturing
plants producing with a more capital-intensive technology and also the mode that gained in
popularity over time, has shifted further to the right than the left mode. While the probability
for either technology is identified by functional form assumptions and exclusion restrictions,
the larger rightward shift in the right mode will show up in the production function estimates.
The estimation results (later) will indicate that the new technology has a higher elasticity of
substitution. It allows lean plants to respond more to the same change in relative factor prices,
leading to a larger increase in capital–labour ratio for the new technology. The estimation results
will also reveal that the new technology experiences a higher capital-biased technological change(
θ̂k
L > θ̂k

M
)
. Both characteristics of the estimated technologies are consistent with the patterns

observed in Figure 4.32

An example clearly illustrates that failure to control for the existence of different
technologies will bias productivity growth estimates. Figure 5 plots simplified unit isoquants
for both types of technology in input space. The producers with the lean technology have a

32. The translog specification of the production function combined with the functional form assumptions on
technology switching determines to what extent differences in growth of the capital–labour ratio between mass and
lean plants will be attributed to differences in capital-bias technology change or elasticity of substitution.
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FIGURE 5

Neglecting the existence of two technologies biases productivity growth estimates

steeper isoquant (the solid line), choosing a higher capital–labour ratio at the same factor prices.
Producers with the mass technology face a different tradeoff between labour and capital, captured
by the dashed line. If both types of plants are pooled, the estimated technology will lie between
the two existing ones and have the shape of the dotted line. Take a plant with an initial production
plan atP0 and a production planP1 in some later year. Without knowledge of the input tradeoff
the technology allows, it is impossible to know the growth in productivity the plant experienced.
We have to separate movement along the isoquant from the shift in the function. If we estimate
only one production function for the pooled sample, productivity growth will be understated for
plants with the mass technology. Actual productivity growth is 2P1/02, although it is estimated
to be 1P1/01. For producers with the new technology, productivity growth is overstated. It is
actually zero, although it is estimated to be 1P1/01 as well. If we believe heterogeneity in
technology to exist, we have to control for it to measure productivity growth correctly.

5. ESTIMATION

5.1. Likelihood function

Equations (II), (IIIa) and (IIIb) describe the distribution of the endogenous variables—materials,
output, and labour per shift—conditional on technology. The probability a plant produces with
each technology was derived separately and is given by (I) and (I′). The vectory =

[
m,q, L

S

]′
contains the endogenous variables of the system. It depends on two vectors of disturbances (one
for each technology,i =M orL), εi =

[
εm

i , ε
q
i , ω

k
i

]′, two parameter vectorsβi , and the matrix
X of exogenous variables(S, L , K , t,W, Z). A word of explanation is warranted about the
exogeneity. The capital stock depends on the Hicks-neutral productivity term,ωn

i , but not on
any of the variables inεi , because it is realized earlier.S and L will depend onωk

i , but not on
the two other error terms inεi . The dependence ofLS onωk

i is explicitly modelled and used to
substitute the capital-productivity from the production function. As a result, bothS and L are
exogenous variables at the production stage.
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I assume that the three errors are independent and normally distributed. Given the nonlinear
relation between the labour-shift ration andωk

i in (II), the Jacobian for the transformation of
variables has to be derived,

∂ωk
i

∂L/S
=

(
L

S

)−1(
λi + λ2

i − β l
i

)
. (7)

The conditions for convexity of the production function also guarantee that the relationship
betweenωk

i and L
S is monotone.λi represents the share of labour in the variable cost, derived in

Section 3.2. It is a function of observed variables and technology-specific parameters.
The joint density of they j t -vector, conditional on technologyi , is

h(y j t |i ) =
1

sm
i
φ

(
m j t − gm(X j t ;βi )

sm
i

)
×

1

sq
i

φ

(
q j t − gq(X j t ;βi )

sq
i

)

×

∣∣∣∣( L j t

Sj t

)−1

(λi j t + λ2
i j t − β l

i )

∣∣∣∣ 1

sk
i

φ

(gi (
L j t
Sj t
)− gl (X j t ;βi )

sk
i

)
, i =M,L

whereφ(·) is the standard normal density andsx
i is the variance ofεx

i . The parametric form for
the functionsgm, gq, gl , gM, andgL are given by equations (II), (IIIa), and (IIIb). I assume
further that, conditional on the technology choice, errors are uncorrelated over time. This is
the natural assumption, even forωk

i , given the interpretation of the error terms. The shock to
capital-productivity only contains the difference between the realized productivity and the plant’s
expectation. It is the higher or lower productivity of the capital stock that was not anticipated and
optimized against. If plants do not make systematic errors, the realizations ofωk

i will not be
serially correlated. The density ofy j for the entire sample becomes33

H(yi
j 1 . . . y

i ′
jT ) = h(y j 1|i ) . . . h(y jT |i ′).

These densities cannot be estimated directly if the technology choice is not observed. For
each sequence(y j 1, y j 2, . . . , y jT )we sum over all possible technology paths it can represent. For
example, the probability of the sequence(yMj 1 , yMj 2 , yLj 3, . . . , yLjT ) occurring isψ j 1 p j 2 (1−p j 2).
The plant started with the mass production technology, stuck with it after the first year, and
switched to the new one after the second year. The probability for a sequencey j —for a plant
present in the sample from time 1 to timeT—is

LH(y j 1, y j 2, . . . , y jT )= (1 − ψ j 1) H(yLj 1, yLj 2, . . . , yLjT )

+ψ j 1(1 − p j 2) H(yMj 1 , yLj 2, . . . , yLjT )

+ψ j 1 p j 2(1 − p j 3) H(yMj 1 , yMj 2 , yLj 3, . . . , yLjT )
+ · · ·

+ψ j 1 p j 2 . . . (1 − p jT ) H(yMj 1 , yMj 2 , . . . , yMjT−1, yLjT )

+ψ j 1 p j 2 . . . p jT H(yMj 1 , yMj 2 , . . . , yMjT−1, yMjT ).

ψ j 1 is the probability a plant enters the sample with the mass technology andp j t is the
probability a plant remains with the mass technology in periodt , given that it had this technology
in periodt−1. The starting probability is a function of variablesW and the transition probabilities
depend on variablesZ. Substituting the previous expressions forH(·) andh(·|i ) and multiplying
over all plants generates the full likelihood function.

33. I write yi
j t to denote the distribution ofy j t conditional on producing with technologyi in yeart .
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5.2. Results

We estimate equations (II), (IIIa), (IIIb) and expressions (I) and (I′) using the likelihood function
in (8). This controls for unobserved heterogeneity in technology by jointly estimating the starting
and switching probability for each technology with the parameters in both production functions.
Endogeneity of productivity is accounted for by including plant-fixed effects and substituting
ωk

i in the production function using the labour per shift equation. All coefficients are estimated
jointly and I impose cross-equation restrictions. Estimation results are in Table 3.

The set of coefficients in the first column represents the mass technology, with standard
errors in the second column. The coefficients in the third column represents the difference
between the parameters for both technologies. These differences are estimated directly and their
standard errors are reported in the fourth column. The coefficients for the lean—absorbing—
technology are at the far right, in the fifth column. They are not estimated directly, but obtained
by summing the coefficients in the first and third columns.

The top panel contains the linear and quadratic input coefficients in the production function,
the parameter for returns to shifts, Hicks-neutral and capital-biased productivity growth, and the
estimated standard deviation for the shock to production. Most of the standard errors for the
difference terms (fourth column) are surprisingly small. The two technologies are estimated to
be significantly different. The shape of the estimated production functions is interpreted in the
next section. The mass technology is associated with a higher rate of Hicks-neutral productivity
growth. The lean technology, on the other hand, experiences a very high rate of capital-biased
productivity growth, but Hicks-neutral productivity growth is slightly negative. In Section 6 we
discuss the impact of these estimates on industry-wide productivity growth.

The second panel contains the coefficients in the materials equation (IIIb). Although there
are no cross-equation restrictions, we estimate it jointly with the other equations, because it
helps to predict technology choice if the amount of materials per vehicle differs by technology.
Quality upgrading through improved components is estimated to be slightly lower for the
lean technology. The parameter on output is indistinguishable between technologies, indicating
both are to a similar degree outsourced. An increase in output is associated with a less than
proportional increase in material input. The larger standard deviation for the error terms in the
material and output equations indicates that the endogenous variables are less well predicted for
the lean technology. The lower emphasis on standardization in this technology leads to larger
variations between plants.

The cost-parameters and standard deviation for the labour per shift equation are in the third
panel. The parameters determining the marginal product of labour were reported earlier, in the
first panel. The dummy for labour unions is assumed constant across technologies. It is estimated
at 0·97, meaning that non-unionized plants save an extra 3% of the wage rate, compared to
unionized plants, when they idle the assembly lines, but the difference is not significant. It
indicates that the tradeoff between labour and shifts does not vary by unionization status. Both
the fixed and variable costs related to shifts are estimated to be lower for the lean technology. The
variable component is not significantly different from zero for lean producers. It will lead lean
plants to operate more shifts, reinforcing the effect of higher returns to shifts, already reported
earlier.

In the bottom panel are the coefficients governing the technology choice. For the starting
probability, the results indicate that plants are gradually becoming more likely to start out with
the lean technology. The coefficient on time is estimated at 0·09, but not significantly different
from zero. The sign is positive, as expected. Because the probability a plant operates with
the mass technology is modelled with the logit formula, the marginal effect is∂ Pr(i =M)

∂ year =

−ηy Pr(1 − Pr). If a new plant is equally likely to operate either technology in 1 year, the
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TABLE 3

Estimation results for the three equations and technology choice

Mass Difference Lean
technology technology

β̂M (S.E.) β̂L − β̂M (S.E.) β̂L

Production function:
Shifts αs

i 0·9684 (0·004) 0·1334 (0·034) 1·1017

Labour αl
i 0·8222 (0·023) 0·0224 (0·023) 0·8447

Capital αk
i 0·1364 (0·039) −0·0325 (0·021) 0·1039

Labour squared βl
i −0·0148 (0·037) 0·0931 (0·037) 0·0783

Capital squared βk
i 0·0268 (0·012) −0·0204 (0·012) 0·0065

Labour× capital βlk
i 0·1483 (0·019) −0·1262 (0·019) 0·0221

Capital-biased PG θk
i 0·0706 (0·019) 0·2533 (0·036) 0·3239

Hicks-neutral PG θn
i 0·0176 (0·005) −0·0269 (0·007) −0·0093

Standard deviation sq
i 0·2353 (0·009) 0·3132 (0·097) 0·5485

Materials equation:
Constant term α0

i 3·6582 (0·270) 0·0003 (0·313) 3·6586

Output 1
αm

i
0·8571 (0·022) 0·0099 (0·026) 0·8670

Quality upgrading θm
i 0·0210 (0·002) −0·0075 (0·003) 0·0135

Standard deviation sm
i 0·2231 (0·008) 0·2257 (0·008) 0·4488

Labour-shifts equation:
Capital cost ρi 2·9E-6 (5·5E-6) −2·9E-6 (3·5E-4) 1·4E-11
Fixed cost per shift µi 67·483 (11·4) −10·021 (11·3) 57·462
Union dummy δ 0·9745 (0·123) X X 0·9745
Standard deviation sk

i 0·0644 (0·008) −0·0340 (0·005) 0·0304

Technology choice:
Starting probability: η

Constant term −2·0345 (0·613)
Dummy for cars 0·6853 (0·255)
Dummy for trucks 1·1867 (0·427)
Japanese dummy 1·0404 (0·281)
Time 0·0911 (0·046)

Transition probability: γ

Constant term −1·9412 (0·755)
Dummy for cars −0·1328 (0·204)
Dummy for trucks −0·7739 (0·723)
Changeover dummy 0·4080 (0·303)
Time −0·0383 (0·057)

Number of observations 1358
Log-likelihood 1890·8

probability a plant starting the next year operates with the lean technology is 2·25% higher. The
increase in probability for the lean technology slows down when it becomes higher, but Figure 6
illustrates that the probability new plants employ the mass technology decreases fast. Plants that
produce only trucks, and to a lesser degree plants producing only cars, prefer the lean technology,
although the coefficients are not estimated very precisely. Surprisingly, the new technology seems
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FIGURE 6

Probability that a new plant starts out with the mass technology

to be less favoured by plants that produce both trucks and automobiles. Japanese producers
are more likely to choose the lean technology. The average starting probability for the mass
technology is 0·81 at the beginning of the sample period and 0·23 at the end.

Figure 6 plots the starting probability for different types of plants. The three dummy
variables inZ—only-cars, only-trucks, Japanese ownership—define six types of plants, all of
which face a different probability for the mass technology in each year. For readability, only the
schedule for four of the six types are plotted in Figure 6. The positive coefficient on time makes
the probability for the mass technology decline over the years. The positive coefficient estimate
on Japanese ownership shifts the schedule for each vehicle category down. The first Japanese
plants entered the sample in 1982.34

For the transition probability, the negative coefficient on time indicates that the probability
for a mass plant switching to the lean technology declines over the sample period. During a year
in which a plant has a major changeover, it is more likely to adopt the new technology as well. I
reported earlier that plants producing both cars and trucks had the highest probability to start out
with the mass technology. The results also indicate that they have the highest probability to make
the transition to lean. Figure 7 traces the inverse of the transition probability, the probability that
a mass production plant remains with the old technology, in regular and changeover years for the
different types of plants. The average switching probability over the entire sample period is 0·07.
This ranges from a low of 0·02 for a truck producer if 1996 was a regular year, to a high of 0·18
for a car and truck producer if 1963 was a changeover year. These statistics can be interpreted
as hazard rates. The average transition probability suggests that over a 10 year period half of the
mass producers would switch to the lean technology. In 1963 it would only take three and a half
changeover year to achieve the same percentage of mixed-plants switching. A small increase in
the transition probability has large effects.

34. The three joint ventures between American and Japanese producers, NUMMI, AutoAlliance and Diamond-
Star, are considered Japanese plants.
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FIGURE 7

Probability a mass production plant does not switch to the lean technology

5.3. Interpretation

I draw two conclusions about technology from the estimation results. First, the two technologies
are estimated to be rather distinct. The characteristics of both production functions that I estimate
are consistent with an interpretation of the old technology (the one plants switch out of) as mass
production and the new technology (the one modelled as an absorbing state) as lean production.
Second, the proportion of plants producing with the mass technology declines significantly over
the sample period. This is caused by a combination of entry by new plants, which are more likely
to be lean, and technology switching by existing plants.

I do find evidence for two distinct technologies in the sample. The nature of their difference
corresponds largely to the mass–lean distinction many industry observers have made. Interpre-
tation of the parameters in the production function is complicated by the quadratic terms. In
Table 4, I evaluate several characteristics of the technology, evaluated at the sample mean which
is calculated separately for each technology. Plants are weighted by the imputed probability they
operate with each technology. Table 4 contains estimates for factor shares, returns to scale, pro-
ductivity growth, and elasticities of substitution. The first two columns contain the results for
the two estimated technologies, mass and lean. For comparison, the far right column presents
the same statistics for a translog production function, estimated on the full sample. The translog
estimation uses the same output and input measures and includes plant-fixed effects as well.35

The first two rows contain the labour and capital share in costs per shift (not including the
cost of operating the shift), evaluated at the mean for each technology. The capital share does
not contain the variable costs of operating a shift, which are proportional to the capital stock. It
makes comparison between my results and the regular translog estimation less straightforward.
The mass technology puts more weight on both inputs and produces with constant returns to
scale. The lean technology has a relatively higher weight on capital than labour, as could be
expected from the higher capital–labour ratio in Figure 4. Its capital share is 7·3 times higher
than the labour share, while for mass technology it is only 5·9 times higher. Returns to scale
are noticeable decreasing for the lean technology. This can be the result of less standardization.

35. Failure to correct for capacity utilization led invariably to a negative capital share. I approximated the capital
services a plant derives from the observed capital stock by multiplying capital with an index of capacity utilization.
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TABLE 4

Comparing both estimated technologies with regular translog results

Mass Lean Translog estimation
technology technology for the entire sample

Output per shift:
Capital share in cost per shift 0·144 0·104 0·349
Labour share in cost per shift 0·854 0·764 0·796
Returns to scale (L & K) 0·998 0·868 1·145

Total factor shares:
Labour share in variable cost 0·882 0·695 X
Shift share in variable cost 0·151 0·178 X
Returns to shifts 0·968 1·102 X

Productivity growth:
Hicks-neutral 0·018 −0·009 0·004
Capital-biased 0·071 0·324 0·007
Labour-biased X X −0·006

Elasticity of substitution (L–K) 1·038 1·156 0·334
Demand elasticities:
εLL −0·154 −0·884 −0·117
εK K −0·861 −0·977 −0·266
εL K 0·149 0·120 0·117
εK L 0·886 0·883 0·265

Alternatively it can be caused by the practice of lean plants to assemble more than one model
on the same assembly line. At the model-level returns to scale can be constant, while they are
decreasing for the entire line.

The labour and shift shares in variable cost have an additional correction for the returns
to shifts. The correct formula and interpretation is given by equation (5). Variable costs include
fixed and variable costs associated with operating shifts. For the lean technology, returns to shifts
are estimated to be increasing. As a result, inputs have to increase proportionally less to increase
output and the factor shares sum to less than one. The lower variable cost of operating a shift for
the lean technology (ρL was estimated to be very low) and the increasing returns to shifts both
cause lean producers to operate at a higher level of capacity utilization. The higher number of
shifts operated means that the share of variable costs that goes towards shifts is not that different
between both technologies. The mass producers will spend relatively more on workers, 5·8 times
as much as on shifts compared with only 3·9 times as much for lean producers, confirming the
previously found low capital–labour ratio for the mass technology.

Hicks-neutral and capital-biased productivity estimates differ considerably between the two
technologies, while labour-biased productivity growth is restricted to zero. The high rate of
capital-biased productivity growth for lean producers is remarkable, but not surprising, given
that lean production is associated with flexible machinery. In recent years, advanced equipment
has allowed some Japanese plants to produce rather distinct models on the same assembly line.
It also causes changeover times for the assembly lines between models to be much lower in
Japanese plants. As could be predicted from Figure 5, Hicks-neutral productivity growth for the
regular translog estimation, pooling all plants, is estimated to lay between productivity growth
for lean and mass producers. One should use caution to compare the factor-biased productivity
growth rates in my model with the results for the translog estimation. The latter does not have
the same structural interpretation, because interaction between inputs will affect the productivity
estimates as well.36

36. As a rule of thumb, one can divide the factor-biased growth rates by the factor share, to be comparable with
the results based on the translog estimates.
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FIGURE 8

Probability for mass technology in the sample

The bottom panel in Table 4 contains the estimates for the elasticity of substitution between
capital and labour. The lean technology displays a slightly higher elasticity of substitution,
exceeding one for both technologies. Comparing these results with the translog estimation
indicates that the failure to model capacity utilization explicitly results in an implausibly
low elasticity estimate. The same finding holds for the factor-demand elasticities. The lean
technology is estimated to be more flexible than the mass technology. Labour demand especially,
is estimated to be significantly more elastic. Both technologies are estimated to be more price
responsive than the results for the simple translog estimation indicate.

The second conclusion I draw from the analysis is that the industry as a whole has almost
completed the transition from mass to lean production. I calculate the probability for the mass
technology in each year for each of the 78 plants in the sample by updating the starting probability
with the relevant transition probabilities for each plant. Figure 8 shows that the proportion of
plants in the sample that are likely to produce with the mass technology declines over time, but
in any given year there is considerable variation. The probability for the lean technology was
very small for all plants in 1963, but the reverse is true in 1996.

The decline for mass technology is caused by two trends. The starting probabilities in
Figure 6 already indicated that new plants were gradually more likely to use the lean technology.
At the end of the sample period, every existing plant has a lower than 0·4 probability of using
the mass technology, with the probability significantly lower for some types of plants. Of the 49
plants in the sample in 1963 only half remain in 1996. The average entry year for the other plants
present at the end of the sample is 1983. In that year the average starting probability for the mass
technology was already as low as 0·42.

The second trend leading to the disappearance of mass production is technology switching
by existing plants. For example, car-plants faced a switching probability of around 0·1 in the
first part of the sample, even in regular production years. This translates into half of the plants
making the technology switch in less than 7 years. In addition, switching is more prevalent in
changeover years, which were more common earlier in the sample when switching probabilities
were higher to start with. The average year for all observations in the data set is 1983, while
the average year for a significant model changeover is 1980. The results confirm the conclusion
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from the bottom two panels of Figure 4 that technology switching is important. Figure 7 indicated
that the non-transition probability tends to one towards the end of the sample. Gradually, fewer
plants with the “wrong” technology, that choose to make a costly technology switch, remain.
It makes the probability for the mass technology for any given plant asymptote to a value
above zero, although Figure 8 indicates that this value is rather low for many plants. For some
plants, especially American-owned truck producers that had few changeover years and entered
the sample early on, the mass technology is the optimal production technology, even at the end
of the sample.

6. IMPLICATIONS FOR AGGREGATE PRODUCTIVITY GROWTH

Finally, I investigate what the model teaches us about productivity growth in the industry. The
estimated productivity growth rates are shifts of the production functions, with the function for
each technology shifting independently. The mass technology experiences a higher rate of Hicks-
neutral productivity growth, 1·8 vs.−0·9% for the lean technology. The lean technology, on the
other hand, has a higher capital-biased productivity growth rate, 32·4 vs. 7·1%. The capital-
biased results are not directly comparable to the usual estimates obtained from a translog cost or
production function. The growth rates I estimate only affect total output or costs in proportion to
the share of capital and through the interaction between capital and labour. The interpretation is
the same though: productivity growth is labour-saving. Over time it will lead firms to substitute
capital for labour. The strong upward trend of the real wage has a similar effect. Both trends
help explain the observed increase in vehicles per worker for the industry in Figure 1. Given
the evolution of wages, the higher rate of labour-saving growth reinforces the benefits of lean
technology, which explains its increased popularity over time.

The estimated technologies are used to analyse the evolution of productivity in the industry.
Figure 1 suggested a break in the trend growth rate for labour productivity in the early 1980s,
when productivity growth accelerated strongly. Instead of modelling this as an exogenous shift,
I calculate the impact of trends in fundamentals on the observed industry-wide productivity
growth. A first decomposition divides aggregate labour productivity growth for the industry into
contributions of lean producers, mass producers, and a switching effect. Relocation of resources
between plants and entry and exit play an important role as well. A second decomposition divides
the growth in labour productivity for each technology into the contribution of several effects that
are estimated in the model.

Following Baily, Hulten and Campbell (1992), I decompose aggregate labour productivity
growth for the industry into a term measuring plant-level productivity change, a term capturing
the relocation of inputs between plants and two terms capturing the effect of entry and exit. The
decomposition was improved for unbalanced panels by Haltiwanger (1997), which introduced
an extra covariance term:

1L Pt = L Pt − L Pt−1 =

∑stay, enter

n= j,k
ϑnt L Pnt −

∑stay, exit

n= j,l
ϑnt−1L Pnt−1

=

∑stay

j
ϑ j t−11L Pj t +

∑stay

j
1ϑ j t (L Pj t−1 − L Pt−1)+

∑stay

j
1ϑ j t1L Pj t

+

∑enter

k
ϑkt(L Pkt − L Pt−1)−

∑exit

l
ϑlt−1(L Plt−1 − L Pt−1) (8)

L P = log
( Q

L

)
is the logarithm of the level of labour productivity. The entire expression measures

the average labour productivity growth, weighing each plant by its share in industry employment.
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TABLE 5

Decomposition of industry-wide labour productivity growth

Entire sample average: 1963–1996 After Japanese entry: 1982–1996

Lean plants Mass plants Switching Lean plants Mass plants Switching

1L P (aggregate) 1·28% 2·51%
(1·06%) (0·20) (0·01) (2·25%) (0·14) (0·11)

Plant-level1L P 0·80% 0·55% 0·03% 1·85% 0·88% 0·09%
Relocation 0·44% 0·17% 0·90% −0·24%
Covariance −0·60% 0·01% −0·03% −1·04% 0·21% 0·02%
Net entry 0·42% −0·53% 0·53% −0·71%

I use these weights to investigate the reallocation of labour over time.37 The first term measures
the contribution of labour productivity growth at the plant-level, only calculated for plants that
stay in the sample from yeart −1 to yeart . The second term measures the relocation effect, again
only for plants that stayed in the sample. If inputs are relocated to plants with above average
labour productivity, this term will be positive. The third term is more difficult to interpret as
it measures the correlation between productivity growth and input growth. It will be positive
if productivity improvements are more likely to be found in expanding plants or if plants that
downsize are more prone to experience negative productivity growth. The fourth and fifth terms
measure the contribution of plants entering and exiting the sample. If new plants are relatively
more productive than exiting plants, the sum of the last two terms will be positive.

For each plant I also decompose the level and growth of labour productivity into the
contribution of the mass and lean technology:

1L Pj t = ϕ j t1L Pj t︸ ︷︷ ︸
mass

+ (1 − ϕ j t−1)1L Pj t︸ ︷︷ ︸
lean

+ (ϕ j t−1 − ϕ j t )1L Pj t︸ ︷︷ ︸
switching

(9)

L Pnt = ϕnt L Pnt︸ ︷︷ ︸
mass

+ (1 − ϕnt)L Pnt︸ ︷︷ ︸
lean

, n = j, k, l (10)

where the weight,ϕ j t , is the probability for the mass technology for plantj in yeart . The first
term in (9) captures the contribution to the mass technology, multiplying the labour productivity
growth at plant j with the probability it is producing with the mass technology in yeart .
The second term measures the similar contribution to lean technology, multiplying labour
productivity growth with the probability plantj was lean in both years. The third term multiplies
the productivity growth with the probability a plant made the technology switch at the start of
yeart . Equation (10) similarly decomposes the level of labour productivity into a mass and lean
component.

Substituting equations (9) and (10) in decomposition (8) gives 12 terms. I sum the
contribution of entry and exit for each technology to calculate a net entry effect. Table 5 contains
the results for all 10 terms, averaged over all years in the sample.

The lean technology generates the bulk of industry-wide productivity growth. Plants using
this technology increase productivity faster and new plants are more likely to be lean and have
higher productivity than exiting plants. The relocation of labour between plants that remained

37. Haltiwanger (1997) uses output shares as weights, but it is more intuitive to use denominator shares to

aggregate plant-level productivity, because aggregate labour productivity,L P′
=

∑
i Yi∑
i L i

, can be written asL P′
=∑

i
L i∑
i L i

Yi
L i

. Using logarithms destroys the exact relationship between aggregate and plant-level measures, but it is

unavoidable to make the linear decomposition. Obviously, it has to hold that
∑

j ϑ j t +
∑

k ϑkt +
∑

l ϑlt = 1.
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in the sample generates a positive contribution as well, indicating that workers move over time
to plants with a higher productivity level. This effect is larger for lean plants than for the mass
technology plants. The only negative contribution for lean plants comes from the covariance
term. Productivity growth is more likely to occur in plants that decrease their workforce. The
next decomposition, see Table 6, confirms that lean plants have exploited diseconomies of scale
by reducing their size. If a mass technology plant switches technology, the size of the resulting
lean technology plant is likely to exceed the optimal scale, given the lower scale economies
estimated for the new technology.

The results on plant-level growth and relocation are similar, but smaller in magnitude, for
mass technology plants. One different result is the negative contribution of net entry. It can be
the result of entering mass plants being less productive than the sample average or exiting mass
plants being relatively more productive. Another possibility is that highly productive mass plants
diminish in importance from the moment of entry to the point of exit, caused by a reduced labour
share or a reduction in the probability the plant operates with the mass technology.

The direct effect of switching, in the third column, is minor. Changes in probability for each
technology in any given year are small for most plants. In addition, lack of experience is likely to
make the newly configured plant operate with low productivity for some time immediately after
a switch in technology.

The last three columns in Table 5 show the same results for the last 14 years of the sample,
the period following the entry of Japanese firms. The results are very similar to the decomposition
for the entire sample period, but the growth rates for lean plants are substantially larger and
the difference between mass and lean technology is more pronounced. One new finding is
the negative contribution of relocation for mass plants: labour is relocated from more to less
productive plants. This inverse relocation effect is also present using capital as aggregation
weight. The initial reaction of some manufacturers after the Japanese entry was to move extra
resources, labour and capital, to plants with low productivity, relatively reallocating resources
to below average productivity plants. This strategy proved not very effective and many plants,
often recently refurbished ones, were closed permanently during the recession in the early 1990’s.
After the recession, new plants were built and the estimates suggest that the probability that those
plants employed the mass technology was very small.

A second decomposition divides the growth rate of labour productivity for each technology
into the contribution of underlying effects that were estimated. I decompose the effects by
approximating the estimated production function by a Cobb–Douglas function,

Q = Sα
s
[(

L

S

)αl (
Keθ

kt)αk
]
eθ

nt .

Taking first differences of the logarithm of this function, deducting growth in labour input, and
substituting the coefficient estimates, I can write labour productivity growth for each plant as

1L P = (q̇ − l̇ ) = θ̂n︸︷︷︸
Hicks-neutral PG

+ θ̂kα̂k︸︷︷︸
capital-biased PG

+ α̂k(k̇ − l̇ + ṡ)︸ ︷︷ ︸
capital–labour growth

+ (α̂l
+ α̂k

− 1)(l̇ − ṡ)︸ ︷︷ ︸
returns to scale

+ (α̂s
− 1)ṡ︸ ︷︷ ︸

returns to shifts

+ ε, (11)

where ẋ denotes the year on year growth rate forx. The last term captures the change in
errors between years and the approximation error caused by the use of the Cobb–Douglas
approximation.

I sum each of the five terms over all plants, using the probability for each technology
as weight. All plant-years receive equal weight, as they did in the estimation. To make the
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TABLE 6

Decomposition of labour productivity growth into fundamentals for each technology

Lean technology Mass technology

Growth (%) Contribution (%) Growth (%) Contribution (%)

1L P 1·46 100 1·11 100

Growth in K
L/S 0·58 39 −0·01 −1

Hicks-neutral PG −0·29 −20 0·69 62
Capital-biased PG 1·04 71 0·39 36
Returns to scale 0·08 6 0·05 4
Returns to shifts 0·05 4 −0·01 −1

decomposition add up (given the error term), I use the relative importance of the Hicks-neutral
and capital-biased productivity growth estimates to divide the part of labour productivity growth
not accounted for by the other three terms. Results for both technologies are in Table 6.

For the mass technology, almost all of the growth in labour productivity is Hicks-neutral
and capital-biased productivity growth. For the lean technology most of the productivity growth
comes from capital-biased productivity growth, unsurprising, given the high estimate for this
coefficient. In contrast with the mass technology, there is also a sizable contribution from the
increase in capital–labour ratio (for labour per shift) as well. Total factor productivity, which can
be calculated by deducting the growth in capital–labour ratio from the labour productivity growth
(deduct the second line from the first in Table 6), hardly differs between the two technologies.
Returns to scale are decreasing for the lean technology, but it generates a positive contribution
because the average scale of operation decreased. Many lean plants have become smaller over
time, as a result of the proliferation of models produced. This trend in demand increased the
popularity of the lean technology, since it is better suited to produce small production runs.
Some plants now produce more than one model on the same assembly line, which again favours
the more flexible, lean technology. The increase in capacity utilization, plants are operated more
shifts, makes a small positive contribution to labour productivity growth for lean technology.

7. FINAL CONCLUSIONS

I estimated productivity growth using a structural model of production, accounting for
unobserved heterogeneity in technology and productivity. The estimated technologies are
consistent with the often made distinction between mass and lean production in this industry.
The more recent (lean) technology is associated with higher capital-biased and lower Hicks-
neutral productivity growth. I also find that the mass production technology is disappearing from
the industry. It is caused by the entry of new plants, predominantly choosing the new technology,
and technology switching by existing plants.

Using the estimation results, I investigate the trends underlying the large increase in
aggregate labour productivity growth for the industry since the early 1980’s. Plant-level growth,
attributed mostly to lean producers, and the net entry of plants with the new technology
are the two most important components of aggregate productivity growth. The plant-level
labour productivity growth can be further decomposed. Capital-biased productivity growth
and an increase in the capital–labour ratio are particularly important for the lean technology.
Surprisingly, diseconomies of scale contributed positively as well, because plants decreased their
scale of operation over the sample period.
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