
The Sensitivity of Productivity Estimates:

Revisiting Three Important Debates

Johannes Van Biesebroeck∗

University of Toronto and NBER

August 15, 2006

[forthcoming in Journal of Business and Economic Statistics]

Abstract

Researchers interested in estimating productivity can choose from an array of method-
ologies, each with its strengths and weaknesses. This study compares productivity
estimates and evaluates the extent to which the conclusions from three important pro-
ductivity debates in the economic development literature are sensitive to the choice of
estimation method. Five widely used techniques are considered, two nonparametric and
three parametric: index numbers, data envelopment analysis, instrumental variables
estimation, stochastic frontiers, and semiparametric estimation. Using data on manu-
facturing firms in two developing countries, Colombia and Zimbabwe, I find that the
different methods produce surprisingly similar productivity estimates when the mea-
sures are compared directly, even though the estimated input elasticities vary widely.
Furthermore, the methods reach the same conclusions for two of the debates, support-
ing endogenous growth effects and showing that firm level productivity changes are
an important contributor to aggregate productivity growth. In terms of the third de-
bate, the parametric productivity measures provide evidence of learning-by-exporting,
while the nonparametric measures that allow for a different production technology for
exporters and nonexporters do not.
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1 Motivation

Productivity measurement has become ever more widespread since Solow’s first decompo-

sition of output growth into the contribution of input growth and a residual productivity

term. Productivity is often used as a performance benchmark to rank firms or countries or

to measure the rate of performance improvement over time.1 Such rankings gained credibil-

ity once studies documented that productivity is positively correlated with other indicators

of success such as profit, employment growth, export status, technology adoption, or mere

survival. At the same time, the concept is not without ambiguity. Many different ways to

measure productivity exist, each relying on some untestable assumptions. As a consequence,

the reader is often left in some doubt as to how sensitive the conclusions of a given study

are to the particular productivity measure used.

Given the objective of productivity measurement to identify output differences that can-

not be explained by input differences, at least six issues will affect how successful various

methodologies are at accomplishing this.2 First, one has to specify whether all firms share

the same production technology and input trade-off or not.3 Second, most methods require a

functional form assumption, or at least some restrictions, on the deterministic portion of the

production technology.4 Third, especially when some heterogeneity in technology is allowed,

an assumption on firm behavior is required to learn about the technological differences.

Fourth, when technology is assumed homogeneous across firms, it can be estimated econo-

metrically, but one has to control for the well-known problem of endogeneity of input choices.

Fifth, to distinguish productivity from other unobservable elements that affect output, one

has to place some structure on the stochastic evolution of the unobserved productivity dif-

ference. Sixth, methodologies differ in sensitivity to measurement error in output or inputs.

Especially in less intensively used data sets from developing countries, this is likely to be

important.

This study evaluates five widely-used methodologies, which deal differently with the

1Examples of productivity used as a criterion to evaluate policy interventions or firms’ decisions can
be found in many fields of economics. In industrial economics, a large literature investigates the effect of
R&D on productivity and the resulting impact on industry structure – see Griliches (1994) for an overview.
In international economics, the impact of trade liberalization is now as likely to be measured by firm level
productivity changes as by changes in price-cost margins – see Tybout and Westbrook (1995) for an influential
example.

2See Coelli, Rao, and Battese (1997) for a more elaborate discussion of the different issues involved.
3Most parametric methods assume a homogenous production function; Mairesse and Griliches (1990) and

Klette (1999) are notable exceptions.
4A number of studies investigate the impact of functional form assumptions, see for example Berndt and

Khaled (1979) and Gagné and Ouellette (1998). I sidestep this issue here.
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above issues. Index numbers are relatively flexible in the specification of technology, but

do not allow for measurement error. Assuming firms minimize costs and factor and goods

markets are competitive, they provide an exact measure of productivity without having to

estimate the full range of input substitution possibilities. Data envelopment analysis is an

entirely nonparametric method. Production plans are explicitly compared to the frontier,

which is constructed as a linear combination of ‘efficient’ production plans in the sample.

The method is deterministic, but the benchmark is intuitive from an activities analysis point

of view.

The three parametric methods I consider calculate productivity from an estimated pro-

duction function. Because the framework is explicitly stochastic, they are less vulnerable to

measurement error, especially in output, but misspecification of the production function can

be an issue. Estimators differ most importantly in the way they control for the simultaneity

of productivity and input choices. The system GMM estimator – see Blundell and Bond

(1998) – relies on exogeneity assumptions on lagged inputs and output to generate instru-

ments; productivity is assumed to follow an AR(1) process with a firm-specific intercept.

Stochastic frontier estimators make distributional assumptions on the unobserved produc-

tivity differences to construct a likelihood function for the observed variables; the evolution

of productivity has to be modeled explicitly. The semiparametric approach – pioneered by

Olley and Pakes (1996) – exploits the information on productivity differences contained in

the investment decision; productivity is assumed to follow a Markov process.

To evaluate how sensitive the results are to the five measurement methodologies, I

first compare the estimates directly. The parametric methods produce point estimates and

standard errors for the production function parameters, which can be compared to the entire

distribution of input elasticities (weights) that the nonparametric methods calculate. For

the productivity level and growth estimates, I discuss the correlations between the various

measures, as well as a number of summary statistics for the productivity distributions.

Secondly, I verify whether the conclusions from important debates in the productivity

literature depend on the productivity measure used. I focus on three questions, which have

received a great deal of attention in development economics:

• Can the often-observed positive correlation between productivity level and export sta-

tus be explained entirely by self-selection of more productive firms (plants) into the

export market, or is there a role for learning-by-exporting effects?

• Which variables, if any, are consistently associated with productivity growth resulting

from knowledge acquisition—as modeled in the endogenous growth literature?
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• How important is firm (plant) level productivity change, relative to the reallocation of

output between production units, as a source of aggregate productivity growth for the

industry?

Each debate concerns a different aspect of the productivity distribution. The first question

compares productivity levels across firms, the second compares growth rates, and the third

question depends on changes in the entire productivity distribution. Together, they allow a

comprehensive overview of the impact of measurement methodology.

Two data sources are used to evaluate the robustness of the different methods: one

contains the universe of textile plants in Colombia from 1977 to 1991, the second is a sample of

manufacturing firms from Zimbabwe from 1993 to 1995.5 The two data sets provide distinct

case studies. The Zimbabwean firms operate in a low-income country with a relatively small

and less developed manufacturing sector. Firms produce a variety of products, possibly using

different technologies. The Colombian plants operate in a medium-income country that is

approximately three times as large and has a longer history of manufacturing.6 These plants

are all in the textile industry, which is relatively open to international competition and the

production technology is expected to be more homogenous.

Both data sets (or similar ones in the respective regions) have been used extensively,

not least to study the three debates I focus on. There is little consensus in these literatures.

The learning-by-exporting question is studied for Colombia in Isgut (2001) and Clerides,

Lach, and Tybout (1998). The former highlights the positive correlation between exporting

and productivity, while the latter finds that the correlation can be explained entirely by

self-selection. In contrast, Bigsten et al. (2004) and Van Biesebroeck (2005a) find robust

learning-by-exporting effects for Zimbabwe and other sub-Saharan African countries. In

terms of the second debate, several studies have stressed that technology created in developed

countries is likely to be inappropriate for developing countries – see Acemoglu and Ziliboti

(2001) and Los and Timmer (2005). Tybout (2000) surveys studies that link openness and

the acquisition of foreign knowledge to productivity growth, finding weak but inconclusive

evidence for a positive effect. The studies of Tybout and Westbrook (1995) for Mexico and

Handoussa, Nishimizu, and Page (1986) for Egypt are illustrative for the two regions I study

here. Finally, the debate on the relative importance of firm or plant level change, called the

‘within’ effect, is far from settled. Some existing studies find a smaller effect for Colombia –

see Tybout and Liu (1996) or Petrin and Levinsohn (2006) – than for sub-Saharan Africa –

5Van Biesebroeck (200X) compares different methodologies using Monte Carlo simulations.
6The fraction of GDP in industry (in 1991) was 34.8% in Colombia and 27.7% in Zimbabwe. For Colombia,

46.7% of non-fuel exports consisted of manufacturers, but only 32.2% for Zimbabwe.

3



see Van Biesebroeck (2005b) or Shiferaw (200X).7

Given that studies differ on many dimensions, it is difficult to evaluate the extent to

which opposing conclusions merely reflect different methodological choices or genuine eco-

nomic differences. As alternative conclusions from these debates can lead to different policy

prescriptions, it is important to correctly identify the underlying economic phenomena that

determine them.

The contribution of this study is threefold. First, I present estimators from five dis-

tinct literatures in a consistent framework. Only the general idea and crucial equations are

presented to convey the distinctive features of each. Each method generates comparable pro-

ductivity estimates, but does so in a radically different measurement framework. I indicate

the strengths and weaknesses of each estimator and provide links to the literature for more

detailed information.

The second contribution is to compare the estimates directly. While the productivity

measures are surprisingly similar across methods—the correlations between the different

productivity levels and growth rates are invariably high—the input elasticity estimates differ

substantially, especially if returns to scale are left unrestricted. For some applications, the

results will depend crucially on the choice of estimation methodology.

Third, the results advance our understanding on the three important productivity de-

bates. To a large extent, the different productivity estimators lead to the same conclusions.

Only on the first question are the results for the parametric methods noticeably different

from the nonparametric results, suggesting that exporters use a different technology than

nonexporters.

The remainder of the paper is organized as follows: In Section 2, I provide a brief

background to productivity measurement and introduce the different methodologies. The

data are introduced in Section 3, and in Section 4 the productivity estimates are compared

directly. In Section 5, I verify whether the answers to the three debates vary by estima-

tion methodology. Finally, Section 6 summarizes what the comparisons teach us about the

estimation methodologies and about the economic phenomenons analyzed.

2 Estimating productivity

One firm is more productive than another if it can produce the same output with less

of all inputs or can produce more output from the same inputs. Similarly, a firm has

7A more complete literature review for the three debates follows in the respective subsections of Section 5.
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experienced positive productivity growth if output has increased more than inputs or inputs

have decreased more than output. The more interesting case is to compare two production

plans where one uses more of a first input and the other more of a second input. This requires

the specification of a transformation function that pins down input substitution possibilities.

Each productivity measure is only defined with respect to that specific technology. The

production function,

Qit = Ait F(it)(Xit), (1)

is one such representation of technology, linking inputs (X) to output (Q). Ait is an unob-

servable productivity term, which differs between firms and time periods.

Rearranging the production function as

ln
Ait

Ajτ

= ln
Qit

Qjτ

− ln
Fk(Xit)

Fk(Xjτ )
(2)

underscores that productivity is intrinsically a relative concept. If the technology varies

across observations one has to be explicit which technology underlies the comparison, hence

the k subscript (k ∈ {ij, jτ}). A multilateral comparison of productivity levels can be

achieved by using average productivity across all firms in the denominator. In practice,

lnAit − lnAt is most often used, taking the average of the logarithm, and for comparability

I follow this practice.8

The analysis is limited in a number of ways. Only the single output case is considered

and all productivity differences are Hicks-neutral. As most studies use value added or sales

as output measure and often use a Cobb-Douglas production function which cannot iden-

tify factor-bias in technological change, these restrictions are ubiquitous in the literature.9

Another limitation is the use of a revenue-based output measure (value added) rather than

quantity. If there is product differentiation or any other source of market power, the produc-

tivity measures cannot be interpreted as pure efficiency differences, as they will include price

effects. This limitation is shared by almost all productivity studies, because producer level

prices are rarely observed. A rare exception is Foster, Haltiwanger, and Syverson (2005).

They show how the widely documented selection on ‘productivity’ is really selection on

‘profitability’, as physical productivity measures are found to be negatively correlated with

8In a regression framework, this amounts to including industry-year fixed effects in a regression with log
productivity as dependent variable.

9I construct output-based productivity comparisons, i.e. how much extra output does a firm produce rela-
tive to another firm, conditional on input use. Including input-based comparisons would be straightforward.
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plant-level prices.10

The calculation of the last term in (2)—the ratio of input aggregators—distinguishes the

different methods. Three radically different approaches are possible. First, index numbers

impose some restrictions on the shape of the production technology and assume optimizing

behavior, but obtain productivity measures without estimating any parameters. The first or-

der conditions for input choices imply that the factor price ratio, which is observable, equals

the ratio of the marginal productivities of the factors, see Section 2.1. A second, nonpara-

metric approach constructs a piece-wise linear frontier to maximize the productivity estimate

(minimize the distance to the frontier) for the unit under consideration. Observation-specific

input weights are chosen optimally with as constraint that no other observation can be more

than 100% efficient if the same weights are applied to it, see Section 2.2. Finally, if one is

willing to make functional form assumptions, it is possible to parametrically estimate the

production function. Simultaneity of productivity and input choices is the main econometric

issue and I implement three estimators that control for it differently, see Section 2.3.

The methodologies are introduced briefly in the following subsections. Estimators from

different literatures are presented in a unified framework. For a more detailed exposition,

the reader is referred to Van Biesebroeck (2003) and references to the literature are included.

2.1 Index numbers (IN)

Index numbers provide a theoretically motivated aggregation method for inputs and outputs,

while remaining fairly agnostic on the exact shape of the production technology. For example,

Caves et al. (1982a) show that the Törnqvist index exactly equals the geometric mean of

Malmquist productivity indices using either firm’s technology if the production technology

is characterized by a translog distance function. The weighting exploits information on the

input trade-off contained in the factor prices.

Assuming perfect competition in output and input markets and optimizing behavior by

firms, it is possible to calculate the last term in equation (2) from observables, without having

to estimate the production function. It even allows for some heterogeneity in technology:

only the coefficients on the second order terms have to be equal for the two units compared.

While it is not strictly necessary to assume constant returns to scale, one would need outside

information on scale economies to implement an adjustment. Estimating scale economies

parametrically or information on the cost of capital suffices, but following the usual practice,

I limit attention to the constant returns to scale case.

10For the index number approaches to be theoretically ‘exact’, output markets have to be competitive.
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I use the same formula for total factor productivity growth as Solow (1957):

lnAIN
it − lnAIN

it−1 = ln
Qit

Qit−1

− (
sL

it + sL
it−1

2
) ln

Lit

Lit−1

− (1−
sL

it + sL
it−1

2
) ln

Kit

Kit−1

, (3)

where sL
it is the firm-specific fraction of the wage bill in output. For multilateral productivity

level comparisons, Caves et al. (1982b) propose an index where each firm is compared to a

hypothetical firm—with average log output (lnQ), labor share (sL), etc. The productivity

level of firm i at time t is

lnAIN
it − lnA

IN

t = (lnQit − lnQt)− s̃it(lnLit − lnLt)− (1− s̃it)(lnKit − lnKt) (4)

with s̃it =
sL
it+sL

t

2
. This yields bilateral comparisons that are transitive and still allows for

technology that is firm-specific.

The main advantages of the index number approach are the straightforward computa-

tions (no estimation is required), the ability to handle multiple outputs and many inputs,

and the flexible and heterogeneous production technology it allows. The main disadvantages

are the deterministic nature and the necessary assumptions on firm behavior and market

structure.11

2.2 Data envelopment analysis (DEA)

Data envelopment analysis (DEA) or nonparametric frontier estimation dates back to Farrell

(1957). It was operationalized by Charnes et al. (1978) and an overview of the method with

applications can be found in Seiford and Thrall (1990). No particular production function

is assumed. Instead, productivity is defined as the ratio of a linear combination of outputs

over a linear combination of inputs. Observations that are not dominated are labeled 100%

efficient. Domination occurs when another firm, or a linear combination of other firms,

produces more of all outputs using the same input aggregate, where inputs are aggregated

using the same weights.

A linear programming problem is solved separately for each observation. Input and out-

put weights are chosen to maximize efficiency (productivity) for the unit under consideration.

In addition to sign restrictions, the efficiency of all other firms cannot exceed 100% when the

same weights are applied to them. For unit 1 in the single-output case, the problem boils

11Adjustments exist for regulated firms, non-competitive output markets and temporary equilibrium, but
they either involve estimating some structural parameters or are more data intensive.
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down to
max

vq ,v∗,ul,uk
θ1 =

vqQ1 + v∗

ulL1 + ukK1

subject to
vqQi + v∗

ulLi + ukKi
≤ 1 i = 1...N

vq, ul + uk > 0, ul, uk ≥ 0

(5)

Multiple outputs would be aggregated linearly and v∗ is a complementary slack variable to

allow for variable returns to scale (v∗ = 0 for constant returns to scale). In practice, most

applications solve the dual problem, where θ1 is chosen directly.

The efficiency measure θi is estimated on a sample that includes all firm-years as separate

observations and can be interpreted as the productivity difference between unit i and the

most productive unit: θi = Ai
Amax

. Estimates of productivity levels and growth rates that

are comparable to those obtained with the other methodologies can be defined as:

lnADEA
it − lnA

DEA

t = ln θit −
1

Nt

Nt∑
j=1

ln θjt (6)

lnADEA
it − lnADEA

it−1 = ln θit − ln θit−1. (7)

These transformations do not change the ranking of firms, only the absolute productivity

levels and growth rates.

The main advantage of DEA is the absence of functional form or behavioral assumptions.

The underlying technology is entirely unspecified and allowed to vary across firms. The linear

aggregation is natural in an activities analysis framework. Each firm is considered a separate

process that can be combined with others to replicate the production plan of the unit under

investigation. On the other hand, the flexibility in weighting has drawbacks. Each firm with

the highest ratio for any output-input combination is 100% efficient. Under variable returns

to scale, each firm with the lowest input or highest output level in absolute terms is also

fully efficient. The most widely used implementations are not stochastic, making estimates

sensitive to outliers. Because each observation is compared to all others, measurement error

for a single firm can affect all productivity estimates.

2.3 Parametric estimation

The parametric methods assume the same input trade-off and returns to scale for all firms.

Functional form assumptions concentrate all heterogeneity in the productivity term, but the

explicitly stochastic framework is likely to make estimates less susceptible to measurement

error. I follow most of the literature by estimating a Cobb-Douglas production function in
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logarithms,

qit = α0 + αllit + αkkit + ωit + εit. (8)

ωit represents a productivity difference known to the firm, but unobservable to the econo-

metrician; εit captures other sources of i.i.d. error.

Consistent estimation of the input parameters faces an endogeneity problem. Firms

choose inputs knowing their own level of productivity and a least squares regression of output

on inputs will give inconsistent estimates of the production function parameters. I imple-

ment three estimators that explicitly address the endogeneity problem. The two stochastic

frontiers in Section 2.3.1 make explicit distributional assumptions on the unobserved pro-

ductivity; the GMM-SYS estimator in Section 2.3.2 relies on instrumental variables; the

semiparametric estimator in Section 2.3.3 inverts the investment function nonparametrically

to obtain an observable expression for productivity.

Because the input aggregator is assumed constant across time and firms, productivity

level comparisons and growth rates are straightforward:

lnAz
it − lnA

z

t = (qit − qt) − α̂z
l (lit − lt) − α̂z

k(kit − kt) (9)

lnAz
it − lnAz

it−1 = (qit − qit−1) − α̂z
l (lit − lit−1) − α̂z

k(kit − kit−1), (10)

z ∈ {SF1, GMM, OP}. To obtain a clean estimate of ωit one should subtract an estimate

for the difference in error terms from the right-hand side. Generally this is not possible and

ignored because E(εit) = 0. For the second stochastic frontier estimator (SF2), a different

formula will be used to purge the random noise (ε) from the productivity estimates.

2.3.1 Parametric estimation: stochastic frontiers (SF)

The stochastic frontier literature uses assumptions on the distribution of the unobserved pro-

ductivity component to separate it from the random error. The method is credited to Aigner

et al. (1977) and Meeusen and van den Broeck (1977) who model productivity as a stochastic

draw from the negative of an exponential or half-normal distribution. Estimation is usually

with maximum likelihood. In the production function (8), the term ωit is weakly negative

and interpreted as the inefficiency of firm i at time t relative to the best-practice production

frontier. An alternative interpretation is that the firm-specific production function lies ωit

below best-practice.

Initially developed to measure productivity in a cross-section of firms, the model was
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generalized for panel data in a number of ways. Battese and Coelli (1992) provide the most

straightforward, but also the most restrictive generalization, modeling the inefficiency term

as

ωSF1
it = −eη(t−t0) ωi with ωi ∼ N+(γ, σ2). (11)

The relative productivity of each firm (ωi) is a time-invariant draw from a truncated normal

distribution. Inefficiency increases (decreases) deterministically over time if η is positive

(negative) at the same rate for all firms.

A more flexible generalization of the cross-sectional stochastic frontier, by Cornwell et al.

(1990), is to estimate a time-varying firm-specific effect using three coefficients per firm:

ωSF2
it = αi0 + αi1t+ αi2t

2. (12)

Productivity still evolves deterministically, but the growth rate changes over time and varies

by firm.

While it is customary to calculate technical inefficiency as E(eωit|ω̂it + ε̂it), for compa-

rability with the other methods I use the expected value of log-productivity. For SF1, this

boils down to the earlier formulas, (9) and (10).12 For SF2, productivity level and growth

can be calculated as

lnASF2
it − lnA

SF2

t = (α̂i0 − α̂0) + (α̂i1 − α̂1)t+ (α̂i2 − α̂2)t
2 (13)

lnASF2
it − lnASF2

it−1 = (α̂i1 − α̂i2) + 2α̂i2t. (14)

An advantage of the stochastic frontiers is that the deterministic part of the production

function can be generalized easily to allow more sophisticated specifications, e.g. to incorpo-

rate factor-bias in technological change. They straightforwardly generalize the popular fixed

effects estimator. The two implementations trade off flexibility in the characterization of

productivity with estimation precision. SF2 uses 3×N degrees of freedom and it is the only

estimator where consistency relies on asymptotics in the time dimension. One might also be

uncomfortable with identification coming solely from distributional assumptions, which are

especially restrictive for SF1.

12The best estimate of E(ωit|ω̂it + ε̂it) is (ω̂it + ε̂it) if ωit is independent of εit.
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2.3.2 Parametric estimation: instrumental variables (GMM)

The general approach to estimate dynamic error component models of Blundell and Bond

(1998) was first applied to production functions in Blundell and Bond (2000). The pro-

ductivity term is modeled as a firm fixed effect (ωi) plus an autoregressive component

(ω′
it = ρω′

it−1 +ηit). Quasi-differencing the production function gives the estimating equation

in its dynamic representation,

qit = ρqit−1 + αl(lit − ρlit−1) + αk(kit − ρkit−1) + α′
t + ω′

i + (ηit + εit − ρεit−1).︸ ︷︷ ︸
εit

(15)

There is still a need for moment conditions to provide instruments, because the inputs will

be correlated with the composite error εit.

Estimating equation (15) in first-differenced form takes care of the firm fixed effects.

Three and more periods lagged inputs and output will be uncorrelated with ∆εit under

standard exogeneity assumptions on the initial conditions.13 Blundell and Bond (1998)

illustrate theoretically and with a practical application that these instruments can be weak.

If one is willing to make the additional assumption that input changes are uncorrelated with

the firm fixed effects, twice lagged first differences of inputs are valid instruments for the

production function in levels. The production function in first differences and levels are

estimated jointly as a system with the appropriate set of instruments for each equation.

Productivity is again calculated using equations (9) and (10).

The GMM-SYS method is flexible in generating instruments and one can test for overi-

dentification. It allows for an autoregressive component to productivity, in addition to a

fixed and an idiosyncratic component. Relative to the simple fixed effects estimator, it also

uses the information contained in the levels, which is likely to help with measurement error,

see Griliches and Mairesse (1998). The main disadvantage is the need for a long panel,

at least four time periods are required. Also, if instruments are weak, the method risks

underestimating the coefficients.

2.3.3 Semiparametric estimation (OP)

The last method was introduced by Olley and Pakes (1996) to estimate productivity effects

of restructuring in the U.S. telecommunications equipment industry. Productivity, a state

variable of the firm, is assumed to follow a Markov process unaffected by the control vari-

13At least three lags are necessary as ∆εit contains errors as far back as εit−2. Van Biesebroeck (2003)
lists the exact form of the necessary assumptions and moment conditions.
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ables. Investment, which is shown to be a monotonically increasing function of productivity,

becomes part of the capital stock with a one period lag. Inverting the investment equation

nonparametrically provides an observable expression for the productivity term that can be

used to substitute it from the production function.14

In a first estimation step, the variable input coefficients and the joint effect of all state

variables are estimated. In a second step, the coefficients on the observable state variables—

just capital in our case—are identified, relying on the orthogonality of capital and the in-

novation in productivity. An intermediate step controls for sample selection, as firms are

assumed to exit if productivity falls below a threshold, which is likely to be decreasing in

capital. The probability of survival (P̂ ) is predicted from a Probit regression and will enter

as a second argument in the nonparametric function ψ(.) in the second step. The estimating

equations for the two steps are

qit = α0 + αllit + φt(iit, kit) + ε1it (16)

qit − α̂llit = αkkit + ψ(φ̂it−1 − αkkit−1, P̂it) + ε2it. (17)

The functions φt and ψ are approximated nonparametrically by a fourth order polynomial

or a kernel density. Productivity is calculated from (9) and (10).

An advantage of the Olley-Pakes approach is the flexible characterization of productivity,

only assuming that it evolves according to a Markov process. Potential weaknesses are the

nonparametric approximations. The functions that are inverted are complicated mappings

from states to actions, which have to hold for all firms regardless of their size or competitive

position. Ackerberg et al. (2005) also illustrate that the implicit assumptions required to

identify the variable input coefficients are relatively restrictive.

3 Data

I evaluate the different methodologies using two data sets that have been used extensively in

the productivity literature. The first is a panel of manufacturing plants from the Colombian

Census of Manufacturers. For a detailed description of the data and variable construction,

see Roberts (1996). It covers all active establishments between 1977 and 1991, but I limit the

sample to plants that at some point are classified in industry ISIC (Rev. 2) 322: ‘Clothing and

14The methodology is more general than this exposition makes appear. The basic idea is to use another
decision by the firm to provide additional information on the unobserved productivity term. Alternatively,
Levinsohn and Petrin (2003) invert the material input demand .
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Apparel’. Plants in this industry are expected to be relatively homogeneous in technology,

at least compared to other industries. The sector also has a relatively large foreign exposure,

which makes it an interesting place to evaluate the different debates.15

The sample is further limited by only including plants that operate for at least three

years, as many estimation methods need at least three observations per plant. This results in

an unbalanced panel of 14348 observations from 1957 plants with nonmissing information on

output, labor, capital, wages, and investment (investment is often zero). The output concept

used is value added, defined as sales minus indirect costs and material input. Labor input is

total employment and capital input is the reported book value of the plant and equipment.

Value added is deflated with the same sectoral output deflator used in Roberts (1996). For

capital, the capital goods deflator from the IMF Financial Tables is used.

The second data set contains a sample of manufacturing firms in Zimbabwe.16 Data

was collected from firm surveys for 1993, 1994, and 1995. Approximately 200 firms were

interviewed in three consecutive years. For details on the sampling frame, some background

information on the country, and the size distribution of firms, see Van Biesebroeck (2005b).

Firms come from four broadly defined manufacturing sectors: food, textile, wood, and metal,

corresponding roughly to the ISIC classification 31, 32, 33, and 38. Some firms exit the

sample each year and new firms were added in later rounds to maintain the sample size.17

As for Colombia, only firms with nonmissing data on output, inputs, wage bill and in-

vestment (including zeros) are retained. Output is value added, sales minus indirect costs and

material input, inputs are total employment (labor) and the reported replacement value of

the plant and equipment (capital). Value added and capital are deflated using the manufac-

turing deflator from the IMF Financial Tables.18 Table 1 contains some summary statistics.

In all tables, results for Colombia will be on the left and for Zimbabwe on the right. Note

that the Colombian data set covers plants and the Zimbabwean data set firms; for ease

of exposition I will occasionally use the terms plants and firms interchangeably to denote

observations in both data sets.

[Table 1 approximately here]

15In the final year of the sample, the textile industry accounts for 10% of manufacturing employment, 3%
of value added, and 8% of Colombian manufacturing exports.

16The web site of the Centre for the Study of African Economies at http://www.csae.ox.ac.uk/ provides
a link to the data and numerous published and working papers that use this and similar data for other
sub-Saharan countries.

17The short sample period required some modifications in the estimation algorithms. The SF2 estimator
only uses a linear time trend, estimating firm-specific intercepts and growth rates, but no quadratic effects;
the GMM estimator does not include firm dummies.

18Absent more detailed indices, both variables are transformed using the same deflator.
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4 Direct Comparison of Methodologies

The following table summarizes the acronyms used when discussing the results and indicates

the equations used to calculate productivity levels and growth rates.19

method (level) - (growth)

IN Törnqvist Index enforcing constant returns to scale (4) - (3)

DEA Data Envelopment Analysis: nonparametric frontier (6) - (7)

SF1 Stochastic frontier with time-invariant productivity ranking (9) - (10)

SF2 Stochastic frontier with two/three sets of dummies per firm (13) - (14)

GMM joint estimation of prod. function in levels and first differences (9) - (10)

OP Semiparametric inversion of investment equation (9) - (10)

4.1 Production function parameters

Table 2 lists the parametric estimates for the production function coefficients with standard

errors. For comparison, I also include least squares estimates of the production function

(OLS). For the Törnqvist index, which allows for heterogeneity in technology, the average

wage bill in value added is reported in the labor column, with its standard deviation across

all observations. For the DEA results, I calculate the relative weight of labor and capital in

the output aggregate and show the median and standard deviation of the distribution.

[Table 2 approximately here]

One choice to make is whether to enforce constant returns to scale (CRS) or not. The

CRS results for Colombia tend to be relatively similar for the different parametric meth-

ods: labor coefficient estimates range from 0.75 to 0.80 and capital coefficient estimates

19The index numbers calculations can be performed easily with most software packages. DEA estimation
was carried out with software developed by the Operations Research and Systems Group at the Warwick
Business School (Windows version 1.10). SF1 calculations are performed with the FRONTIER 4.1 pro-
gram written by Tim Coelli, available online at http://www.uq.edu.au/economics/cepa/frontier.htm. SF2
estimation is by OLS; estimating the large number of coefficients is facilitated by the use of sparse ma-
trix utilities in GAUSS or by an iterative procedure where a subset of the explanatory variables and the
dependent variable are first regressed on the remainder of the explanatory variables, and the residuals are
subsequently regressed on each other. Estimation of the Arellano-Bond dynamic panel model using lagged
levels as instruments for the first-differenced equation is now available for STATA (command xtabond). For
the system GMM estimator, I used the GAUSS program DPD98 written by Manuel Arellano, available online
at http://www.cemfi.es/∼arellano/#dpd. Finally, the semiparametric estimation routine (as implemented
by Levinsohn and Petrin (2003)) is now also available for STATA (command levpet), but I programmed it
myself to include the intermediate step, controlling for endogenous exit.
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are between 0.20 and 0.29.20 However, when returns to scale are estimated freely, all four

parametric methods find them to be strongly and statistically significantly decreasing in

the Colombian textile industry. For Zimbabwe, three parametric estimators find increasing

returns to scale, while only the SF2 estimator points to decreasing returns to scale. DEA

allows the returns to scale to vary by firm and the range of estimates is large (the stan-

dard deviation is 0.33 in Colombia and 0.32 in Zimbabwe). The median estimate is 0.88 for

Colombia and 1.04 for Zimbabwe, broadly consistent with the parametric estimates.

In the absence of a priori evidence on scale economies, I do not impose them to be

constant (except for the index numbers). While the absolute size of scale economies differs,

all estimators agree that the average plant in the Colombian textile sector has exhausted all

scale economies and might even be operating above efficient scale. On the other hand, all

but one estimator suggests that there are moderate scale economies left to be exploited by

Zimbabwean manufacturing firms, consistent with the evidence quoted in Tybout (2000).21

Accounting for the simultaneity of inputs and productivity lowers the labor coefficient

estimate significantly for the parametric methods relative to the OLS estimates. The two

nonparametric methods also calculate an average weight for labor much below the OLS

estimates. The range of estimates across the different methods is extremely wide in both

samples. It ranges from an implausibly low 0.21 (GMM) to 0.74 (OP) in Colombia and from

0.38 (SF2) to 0.75 (OP) in Zimbabwe. While the methods agree that OLS estimates are

biased upward, there is no agreement whatsoever on the true labor coefficient. Moreover,

the low standard errors convey a misleading sense of accuracy.

The capital coefficient estimate is less affected by the simultaneity correction, but the

change relative to the OLS estimate can go in either direction. The SF1 estimator even finds

a change in opposite directions in both data sets (relative to OLS). The range for the capital

coefficient is even wider than for labor: in Colombia it ranges from 0.09 (SF2) to 0.47 (IN)

and in Zimbabwe from 0.10 (SF2) to 0.64 (SF1).

While the range of estimates is large, not all results are equally reliable. One notable

pattern is that estimators that include fixed effects, SF2 in both countries and GMM in

Colombia, find strongly decreasing returns to scale. SF2 estimates of the coefficient on

the capital stock, which tends to be relatively constant over time, are extremely low. The

20Full results are reported in the working paper version, Van Biesebroeck (2003). All labor coefficients are
estimated below 0.83 and the capital coefficients above 0.17, the respective OLS estimates.

21The different unit of analysis and the oversampling of large firms in Zimbabwe, makes it difficult to
compare the two samples. It is noteworthy that the median textile firm in Zimbabwe employs only one third
as many workers as the median firm in the other industries in the sample, consistent with a much lower
minimum efficient scale in textiles.

15



GMM capital coefficient estimate is higher, as lagged values of inputs are relatively strong

instruments for the capital stock. Griliches and Mairesse (1998) argue that the signal-to-

noise ratio in the data is much reduced if input coefficients are identified off the changes over

time, with measurement error biasing the coefficient estimates downward.22

Of the remaining estimates, the average wage bill (IN) is below all parametrically es-

timated labor coefficients. For developing countries, this is not entirely surprising. To the

extent that the production technology and machinery is imported from more developed

countries and input substitution is limited, the capital intensity will be higher than optimal,

given the low relative factor price for labor. In addition, a substantial fraction of worker

compensation might be in the form of non-wage benefits. Hence, the wage bill will underes-

timate the share of labor in total costs. Both phenomenons are likely to be more pronounced

for Zimbabwe than Colombia, which is consistent with the relative size of the average wage

shares.

Finally, the SF1 assumption that all firms improve productivity at the same rate is likely

to be less appropriate in Zimbabwe than in Colombia. In the first two years of the sample,

half of all Colombian plants experienced labor productivity growth between -0.03 and 0.34;

the equivalent range for Zimbabwean firms was -0.21 to 0.29, or 33% wider. Comparing

the average firm-level growth rates over the entire sample periods in the two countries, the

difference is even larger. Half of all Colombian plants averaged labor productivity growth

between -0.03 and 0.11; the equivalent range for Zimbabwe is -0.17 to 0.30, more than three

times as wide.

Limiting attention to the three most reliable estimates for each country, the results are

much more consistent. For Colombia, the labor elasticity is estimated at 0.68 with SF1 and

0.74 with OP; the interquartile range for the relative weight of labor with DEA is 0.54–0.88.

The three methods also find returns to scale to be decreasing in the range of 0.85–0.92. For

Zimbabwe, the labor coefficient is estimated rather similar: 0.70 by GMM and 0.75 by OP;

DEA gives an interquartile range of 0.50–0.84. The difference in capital elasticities between

the two countries is larger: the average for Colombia is 0.21, while it is 0.37 for Zimbabwe.

As a result, returns to scale are estimated to be increasing in Zimbabwe, with an average

point estimate of 1.09, and decreasing in Colombia, on average 0.88.

It is comforting to know that the large differences in Table 2 can be understood and

that the range of most trustworthy estimates is relatively narrow. However, these ‘ex post’

22Van Biesebroeck (200X) uses simulated data to show that measurement error can be a severe problem in
these models. An alternative interpretation is that there are important unobserved inputs; increasing only
labor and capital inputs will not raise output proportionately.
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insights when the entire range of estimates is available are not very useful from a practical

perspective. Generally, only a single estimate is available and one has to decide whether to

trust it or not. For each method, a number of diagnostics exist to judge how reliable the

results are. For example, almost 10% of firms in Zimbabwe report a wage share higher than

one, but only 4% in Colombia, providing even more reason not to rely on the IN results in

Zimbabwe. For DEA, we can check what fraction of observations are deemed 100% efficient.

In both data sets, 20 observations are found to be fully efficient, which represents 5.1% of

all firms in Zimbabwe, but only 0.14% of plants in Colombia. On the other hand, only 4.5%

of observations in Zimbabwe construct an input aggregate by putting full weight on a single

input (almost always labor); this happens for 15.6% of the observations in Colombia (split

almost equally between capital and labor).

For the two stochastic frontiers there are no obvious diagnostic checks as they are not

identified if the distributional assumptions are violated. We do find, however, that the es-

timated residuals of both the SF1 and SF2 models seem to follow an AR(1) process, which

violates the models’ assumptions. For the GMM-SYS estimator, the restrictions on the pa-

rameters of the dynamic representation of the production function (e.g. the parameter on

lagged capital should equal −ραk) are violated in both countries and we do not impose them.

In Colombia, the overidentifying restrictions on the instruments are narrowly rejected and

there is strong evidence of serial correlations of more than one period. In the short panel

available for Zimbabwe, the GMM-SYS estimation reduces to a cross-sectional system and

neither of these tests can be performed. For the OP estimation, a crude check is to ver-

ify graphically whether the monotonicity assumption between investment and productivity,

conditional on capital, holds for the estimated productivity series.23 This is the case for

Colombia, but for Zimbabwe the surface curves up for low levels of investment (especially at

high capital levels). A more formal test for the validity of the nonparametric inversions is to

verify whether lagged labor input has any predictive power in the second stage regression.

For Colombia, the sample had to be split in three periods, based on the business cycle, with

separate inversions performed over each period, for the coefficient to become insignificant.

In Zimbabwe, the coefficient was significant with a p-value of 0.04.

While these tests do raise a number of flags, the concerns they raise are unlikely to

be sufficiently severe to reject any of the methodologies if one had only one set of results

available. The large differences in the observable component of the production function has

important consequences for any application that uses the production function directly as a

representation of technology. For example, the potential effect of a trade policy that elimi-

23This can be done straightforwardly in STATA using the gr39 command.
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nates capital controls and attracts more FDI will obviously depend on the capital coefficient

estimate. The estimated input coefficients allow for a decomposition of output differences

in observable input differences and a residual. Whether the residuals are deemed similar or

not crucially depends on the fraction of the total output variation that can be explained by

input differences. This is investigated in detail in the next two sections.

4.2 Productivity level estimates

A first way to compare the productivity estimates is by the dispersion they imply. The first

two columns in Table 3 contain the interquartile range for each method for Colombia and

columns (1b) and (2b) contain the same statistics for Zimbabwe. The median is normalized

to zero by year. The widths of the intervals are relatively similar across rows, especially

in Colombia, which is remarkable because the methods rely on very different calculations

and assumptions. In each country, the most narrow interval is about two thirds as wide as

the widest interval. Intervals are almost 50% wider in Zimbabwe than in Colombia and the

difference goes the same way for every method. It could be the result of the lower level of

development or simply of the much smaller sample size.

[Table 3 approximately here]

The methods that estimate large decreasing returns to scale, SF2 in both countries and

GMM in Colombia, also find the widest intervals of all methods. In Colombia, the two

nonparametric methods that allow heterogeneity in technology (IN and DEA) also tend to

find somewhat wider intervals, but the difference is less pronounced in Zimbabwe. In general,

productivity is highly dispersed. Even in Colombia, only half of all plant have a productivity

level between 45% below and 42% above the median.

Most methods find a distribution of productivity that is slightly skewed to the left in

Colombia and more noticeably right-skewed in Zimbabwe. The right-skewness in Zimbabwe

is consistent with the model of competitive selection in Olley and Pakes (1996): firms exit

when their productivity drops below a threshold, truncating the distribution from the left.24

The SF1 methodology that has left-skewness built-in—productivity is the sum of a symmetric

normal error and an inefficiency term that follows a normal distribution truncated from the

right—is the only method to find left-skewness in Zimbabwe. In Colombia, only the DEA

method finds right-skewness, the opposite of all other methods.

24Most likely, this tendency is enhanced by the stratified sampling on firm size in Zimbabwe, oversampling
large (more productive) firms.
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A second way to compare the productivity estimates is to look at the correlations between

the different measures directly. For Colombia, in the top left panel of Table 4, the average

correlation is 0.79, and even 0.86 limiting the comparison to the parametric methods.25 Even

DEA, which leaves technology entirely unspecified, or GMM, which estimates returns to scale

to be very low, produce productivity estimates that are very similar to those of the other

methods. Only the correlation between the SF2 and IN productivity estimates is below

0.50. Results for Zimbabwe are broadly similar. The average correlation is lower, at 0.66,

but this is largely driven by the more dissimilar results for SF2. Omitting this estimator,

which estimates two firm-specific coefficients from only three years of data, raises the average

correlation to 0.86.26

[Table 4 approximately here]

For comparison, I also added correlations between labor productivity (LP), defined as

value added per worker, and the different multifactor productivity measures. Only in a

single instance (correlations with the DEA estimates in Colombia) is the correlation with

labor productivity lower than with all the other measures. In Colombia, correlations of either

SF1 or OP with each alternative productivity measure always exceed correlations with LP,

but both of these measures achieve a very high correlation with LP themselves (0.92). In

Zimbabwe, correlations with LP are never the lowest and no method achieves consistently

higher correlations with the others than LP.

The broad similarity of the productivity estimates across methods, in spite of the large

differences in input coefficient estimates, indicates that the variation in the observable part of

the production function is swamped by variation in unobservables. Even labor productivity

estimates are surprisingly similar. Only the SF2 results—which purge the random errors

(ε in equation (8)) from the productivity estimates—are noticeably different from the other

results in Zimbabwe. If one is only interested in the productivity residuals, not in the

input coefficients or scale economies, the choice of methodology turns out to be of secondary

importance.

25Imposing constant returns to scale, the correlations are even higher, see Van Biesebroeck (2003): the
lowest correlation is 0.79. The parametric methods that use equation (9)—GMM, SF1, and OP—become
virtually indistinguishable.

26Spearman-rank correlations between the different methods are similar, but slightly lower for the stochas-
tic frontier estimates. Calculating the correlations separately by year yields virtually identical results.
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4.3 Productivity growth estimates

To compare the productivity growth estimates, Table 3 lists the unweighted and output-

weighted averages of productivity growth across all observations in each sample. 1977 to

1991 was clearly a very successful period for Colombian textile plants. The unweighted

average (real) growth rate across all methods is 5.9% per year. By any standard, this is

extremely rapid multifactor productivity growth. At the same time, the differences between

productivity measures are small. The one method that takes out measurement error, SF2,

produces the lowest estimate, which is still 4.9%. All other methods produce an estimate in

the 5.7–6.5% bracket.

In Zimbabwe, the differences are larger. The average is now -7.7% and the estimates

range from -13.6% to +2.4%. The only positive average is for SF2, which estimates a constant

(deterministic) growth rate per firm based on at most three years of data. Moreover, it

calculates the average growth rate only on the limited sample of firms that are observed in

each of the three years and one would expect survivors to be more successful. Without this

outlier, the average is -9.7% and all estimates are in the -13.6% to -6.1% range, clearly a

dismal period for productivity growth in Zimbabwean manufacturing.

Weighing the growth rates by plants’ output level increases the average productivity

growth in Colombia for each method. This is as expected: plants with high output at the

end period receive a higher weight and they tend to have, ceteris paribus, higher productivity

growth. For Zimbabwe, the same effect is consistent with a higher average growth rate for

the DEA or SF2 results if output weights are used. Results for the other methods go in the

opposite direction, i.e. weighting lowers the average. This can be explained by the increasing

returns to scale technology that the SF1, GMM, and OP methods estimate: in a declining

economy, larger firms are penalized additionally. In both countries, the differences between

the methods are exacerbated by weighting and the SF2 method is now even more of an

outlier. Nevertheless, the main conclusion is the same using each productivity measure:

Colombian textile plants were extremely successful over the sample period and Zimbabwean

manufacturing firms extremely unsuccessful.

The correlations between the different productivity growth estimates, in the bottom pan-

els of Table 4, mirror the patterns in the level correlations. Especially correlations between

the GMM, SF1, and OP results are extremely high. Enforcing constant returns to scale,

see Van Biesebroeck (2003), makes them virtually identical. The much lower estimate for

scale economies by GMM in Colombia does not result in less correlated productivity growth

estimates. Even the nonparametric DEA and IN results are very similar to the parametric

20



results. Except for the correlations with the SF2 measures, which are the clear outliers in

both countries, the lowest correlation statistic for Colombia is 0.84 and for Zimbabwe it is

0.77. The average correlation is 0.77 for Colombia and 0.84 for Zimbabwe and even 0.92 and

0.91 omitting the SF2 results.

Finally, at the bottom of each panel in Table 4, I report the correlation statistics be-

tween productivity estimates and labor input. Such measures are sometimes calculated in

macroeconomics to study the covariance between technology and inputs, see for example

Basu, Fernald, and Kimball (200X). In levels, the correlations indicate that larger plants

(high employment) are on average more productive, consistent with the higher wages they

generally pay. The correlations are especially large for the three measures that include fixed

effects and negative only for SF1 in Zimbabwe, as expected given the estimated returns

to scale. More interesting are the correlations in growth rates. Several measures find a

significantly negative relationship between labor input growth and concurrent productivity

growth, consistent with the evidence in Basu et al. (200X) at the aggregate level for U.S.

manufacturing.27 Moreover, the correlations between lagged productivity growth and labor

growth, the bottom row in Table 4, are positive and similar in size for all measures in both

countries. They suggest that productivity growth, as a proxy for technology improvements,

leads to future expansions, again consistent with Basu et al. (200X).

Even though the relative importance attached to the different inputs varies substantially

across methods, the impact on productivity estimates is limited. The differences in input

coefficients are swamped by the huge differences in output and input growth rates across

firms. Productivity growth rates across the different methods are even more similar than

the productivity levels. Especially the similarity between the nonparametric and parametric

results is remarkable. The principal reason is that the correlation of the growth rates of

capital and labor across firms exceeds the corresponding correlation for the input levels.

This is highlighted by the high correlations obtained between most measures and labor

productivity growth. The one exception is SF2: these estimates are similar to the others for

productivity levels, but not for growth rates.

The direct comparison of productivity measures showed surprisingly similar estimates

for the different methods. The second approach to evaluate the importance of measurement

methodology is to verify whether the conclusions on the three productivity debates are more

sensitive to the choice of productivity estimator.

27The point estimates vary across measures, but the positive correlation for DEA in Colombia is insignif-
icant and for Zimbabwe the only two significant correlation coefficients are the negative estimates for SF1
and OP.
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5 Three Debates

5.1 Does learning-by-exporting increase productivity?

The first question—whether firms that export are able to increase their productivity level—

has been one of the most intensely researched questions in the productivity literature for

a decade. While it is well established that exporters have higher productivity than non-

exporters, see for example Bernard and Jensen (1995) or Aw, Chung, and Roberts (2000),

causality could go either way. A first channel is the self-selection of more productive firms

into the export market. Possibly, exporters do not derive any productivity gains from this

activity and their productivity advantage could be fully established before they start export-

ing. Future exporters have been found to differ on many dimensions from nonexporters, even

before they start exporting. Self-selection is certain to explain at least part of the observed

correlation between export status and productivity level. Lopez (2005) surveys the literature

and notes that each microeconomic study finds support for such an effect.

An additional causal effect could go in the other direction if exporters are able to in-

crease their productivity level as they learn from their export activities. Such a learning-by-

exporting effect is not mutually exclusive with self-selection, but establishing its existence

has important policy implications. Trade liberalization is often promoted as a stimulus to

raise productivity levels: the domestic industry will have to face foreign competition at home

and, should firms choose to export, abroad. Hard evidence for such an effect was virtually

nonexistent until recently. Moreover, the earliest rigorous studies looking for learning-by-

exporting effects did not find any. For example, Clerides, Lach, and Tybout (1998) and

Bernard and Jensen (1999) find for Colombia, Morocco, and the U.S. that the positive cor-

relation between productivity and export status can be explained entirely by self-selection.

Later studies, starting with Kraay (1999) for China, did find learning effects, but they often

come with caveats: only in certain industries, only after a longer spell on the export market,

or only in the first one or two years.

Lopez (2005) provides an extensive list of additional studies concluding against, e.g. in

Spain, Germany, and South Korea, or in favor of the learning-by-exporting hypothesis, e.g.

for sub-Saharan Africa, the U.K., or Canada. From this literature it is difficult to gauge

to what extent opposing conclusions reflect methodology or genuine economic differences

between the countries. I test for a learning-by-exporting effect using each of the productiv-

ity measures and two distinct approaches to control for firms self-selecting into the export

market.
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First, I estimate the simultaneous equation model in the seminal paper by Clerides et al.

(1998). A Probit model of a firm’s export decision, equation (19), is estimated jointly with

equation (18) that represents the evolution of productivity.28 Two lags of export status

and productivity are included in each equation. The lagged productivity terms in equation

(18) capture persistence in productivity; in equation (19) they capture self-selection of more

productive firms in the export market. Lagged export status in the Probit equation captures

export persistence, for example resulting from sunk costs of exporting. The parameters of

interest are those on lagged export status in the productivity equation, αx1 and αx2, which

will be positive if past export experience has a beneficial effect on the current productivity

level. Estimation follows Clerides et al. (1998).29

lnAit =
2∑

τ=1

(
αaτ lnAit−τ + αxτEXit−τ

)
+ controls + ω1i + ε1it (18)

EXit =


1 if

2∑
τ=1

(
βaτ lnAit−τ + βxτEXit−τ

)
+ controls + ω2i + ε2it ≥ 0

0 otherwise.

(19)

The second approach to control for self-selection is with a matching estimator as in

Wagner (2002) and De Loecker (2005). These authors find evidence of learning-by-exporting

in Slovenia, but not in Germany. A firm is considered ‘treated’ the first year it exports

(if productivity in the following year is observed). Each treated firm is matched with re-

placement to a control, the nonexporter with the closest propensity score, i.e. its ‘nearest

neighbor’. The propensity score is calculated as the predicted value from a Probit regression

of the treatment dummy on lagged productivity, employment, wages, and the same control

dummies as before. The productivity premium for exporters is estimated on the limited

sample of treated and control firms by regressing log productivity one year post-treatment

on the treatment dummy.30 In the sample for Zimbabwe, only four treated firms can be

identified; in Colombia, there are 119 treated plants.

As a benchmark, columns (1a) and (1b) in Table 5 show the productivity premium for

exporters from a simple least squares regression of log productivity on lagged export status

28In the original paper, a cost measure is used instead of productivity.
29The unobservable in both equations is decomposed into a persistent component (ω) that is integrated

out using Gaussian quadrature and a random component (ε) that is assumed to be normally distributed.
Both components are allowed to be correlated across equations. I follow the original paper to deal with the
initial values problem. In these and all other regressions in Table 5, employment and time, location, and
industry dummies are included as controls.

30In Colombia, current employment and the earlier control dummies are included in the estimation of the
productivity premium.
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and controls. Estimates for Zimbabwe are all in a narrow range between 0.348 and 0.408 and

highly significant. For Colombia, the parametric methods find similar premiums, between

0.268 and 0.399, but the nonparametric methods (IN and DEA) that allow different input

elasticities by plant find productivity premiums an order of magnitude smaller and not sig-

nificantly different from zero. This is consistent with some earlier studies that have shown

that exporters are not only larger, but also produce with a larger capital stock per employee.

Accounting nonparametrically for the higher capital intensity of exporters explains away

most of the estimated productivity advantage. The difference in export participation helps

explain the different results in the two countries. In the Colombian sample, fewer than 9%

of the plants export and the parametrically estimated input coefficients will be more repre-

sentative of the production technology of nonexporters. In the Zimbabwean sample, 54% of

firms export and the production function estimates will be more appropriate for exporters.

The IN results produce the lowest estimate for the productivity premium of exporters in

Zimbabwe as well, although the DEA estimate is at the other end of the spectrum.

[Table 5 approximately here]

Controlling for self-selection of more productive firms into the export market is expected

to diminish the impact of export status on productivity. Results for the simultaneous equa-

tions approach—the coefficient on once lagged export status in equation (18) is reported—are

in columns (2a) and (2b) of Table 5. For Colombia, the point estimates for the parametric

methods fall on average to one third of the OLS estimates, but they remain significantly

positive. For the two nonparametric methods, estimates are similar to the OLS results and

still insignificant. Under the maintained hypothesis that plants share the same production

technology, one would conclude that learning-by-exporting effects are indeed present and

relatively large. The productivity premium is estimated at 11% on average. However, the

nonparametric results suggest that this conclusion is misleading, as they find a productivity

premium for exporters of only 4% on average and the difference with nonexporters is not sta-

tistically significant.31 For Zimbabwe, the range of estimates widens substantially. The point

estimates vary from a productivity decline of -0.057 (SF1) to an increase of 0.151 (DEA),

but no estimate is significantly different from zero anymore. In contrast to the Colombian

results, the nonparametric estimates are at the high end of the range. The large reduction

in the point estimates in both countries, relative to the OLS estimates in columns (1a) and

(1b), points to important self-selection effects.

31Clerides et al. (1998), one of the most prominent studies to find against the learning-by-exporting
hypothesis, used an estimate of average variable cost, purged from capital-intensity effects in a flexible way,
as dependent variable.
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Estimates of the productivity premium using the matching estimator to control for self-

selection are in columns (3a) and (3b). Results are very similar to the simultaneous equations

results. For Colombia, estimates are larger for the parametric than for the nonparametric

methods, but only two methods still find significant learning effects. The point estimates

tend to be higher with the matching estimator, but the standard errors increase even more.

For Zimbabwe, only four firms with data available in the year post export can be identified

as new exporters. Five of the six point estimates are positive, but the range is extremely

wide and the large standard errors do not hide the imprecision.

In sum, all methods find that exporters are more productive, but controlling for self-

selection reduces the difference in most cases, especially for the parametric methods, and

widens the range of point estimates across methods. The results for Zimbabwe all become

insignificant, although some point estimates remain large. In Colombia, there is a significant

learning effect if we assume that technology is homogeneous across plants, but the size of the

premium is estimated much lower using the nonparametric methods. This is one instance

where an important assumption of the productivity measurement methodology crucially

affects the results. A formal test for a structural break in the production function parameters

between exporters and nonexporters strongly rejects that both groups operate with the same

technology.32 The nonparametric methods estimate the position of a plant relative to other

plants in the industry to be similar pre and post exporting, but they use a different input

substitution frontier in both instances.33

5.2 What brings about technological change?

The previous debate centered around differences in productivity levels. Now we turn to the

question of what explains differences in productivity growth across firms. In the neoclassical

growth model, long term per capita growth can only come from technological change, which

is generally left unspecified, exogenous to the model. In the endogenous growth literature, a

nonrival input—knowledge—enters the production function and investments by profit max-

imizing firms in knowledge can lead to steady state (per capita) growth. Tests of this model

using country or industry level data have generally not been supportive. Using time se-

ries variation, the model predicts long-lasting effects of the level of variables that proxy for

32See Van Biesebroeck (2005a) for results in sub-Saharan Africa. Similar results for Colombia are available
upon request.

33In addition, Van Biesebroeck (2005a) finds that approximately half of the learning-by-exporting effect
in nine sub-Saharan African countries can be explained by the realization of scale economies. The large
differences in estimated returns to scale for the different methods lead to very different conclusions on the
importance of scale effects as well; see Van Biesebroeck (2003) for these results.
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knowledge on growth rates. In reality, higher levels of R&D or human capital (engineers

and scientists in the workforce) have not lead to higher growth rates, see for example Jones

(1995).34 Cross-sectional studies, exploiting variation across countries, have by and large

also been unsupportive, see the survey by Durlauf and Quah (1999). These studies have

been criticized because countries at different stage of development are lumped together and

preference and technology parameters are assumed to be constant across countries and over

time.

Much of the empirical growth literature focuses on variables that are constant within a

country, such as institutional quality, the legal system, educational attainment, inequality,

etc. The goal here is to identify variables that explain variation in productivity growth

across firms within a single country. Ehrlich et al. (1994) introduced a useful extension

of the endogenous growth model to explain such differences. Their model has been used

extensively to study the effect of ownership or evaluate the impact of privatization on firm

performance. The Colombian data does not contain information on ownership, but I can

investigate the effect of other variables that plausibly shift a firm-specific asset (knowledge)

that serves as an engine of productivity growth. Five proxies are considered: exporting

output, importing inputs, acquiring external technology, frequent capital investments, and

high levels of human capital.

Importing knowledge from more advanced economies is a first channel with the potential

to raise productivity growth. The first two predictors are dummy variables taking a value

of one if a firm exports some of its final output or imports intermediate inputs.35 Exporters

compete with foreign firms, have to satisfy demanding foreign clients, and are exposed to

advanced technologies. Imported inputs can embody foreign knowledge directly. There is a

large literature on international technology spillovers. A recent paper, Yasar and Morrison

Paul (2005), looks at the effects of three such channels—exporting of output, importing of

machinery, and foreign ownership—and finds each to be associated with higher productivity

levels. A mismatch between knowledge created in developed countries and the production

structure in developing countries, the ‘inappropriate technology’ phenomenon, can reduce

the effects of these channels, see Los and Timmer (2005) for an illustration.

The data set in each country contains an indicator of direct technology acquisition.

Colombian plants indicate whether they paid any royalties (only 2% of plants) and Zimbab-

34Gong, Greiner, and Semmler (2004) incorporate decreasing opportunities for technological innovations,
which reduces the return to knowledge over time. They do find support for the model using time series data
for the U.S. and Germany.

35In Colombia, exporting or importing are much less common (respectively 9% and 6% of plants) than in
Zimbabwe (54% and 64% of firms).
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wean firms indicate whether they invested in any advanced technologies in the preceding year

(68% of firms). Given that domestic R&D in these countries is limited, it is likely that to a

large extent these variables pick up further effects of imported technology. The endogenous

growth model in Diao et al. (1999) explicitly models how effects of R&D can be heightened

by international trade. Acemoglu and Ziliboti (2001) argue that many technologies used in

developing countries are developed in OECD countries and are inappropriate for the local

mix of skills. Mere access to new technologies might not suffice to improve productivity in

developing countries.

A high level or superior quality of human and physical capital is the final channel.

While capital accumulation alone cannot raise long term economic growth, it can increase

the growth rate through embodied technical change, see De Long and Summers (1991) for

an influential study at the aggregate level. Investments in the quality of capital could also

reflect a high level of knowledge within the firm. For physical capital, I use investment

frequency: the fraction of years a firm’s capital investments exceed 5% of the capital stock.

Such an effect would be consistent with the endogenous growth model of Hsieh (2001), where

obsolescence of capital equipment requires continuous investments to maintain growth rates.

For human capital, I use the fraction of employees that are classified as highly-skilled or

technical workers, averaged over all active years.

The statistics in Table 6 are the coefficient estimates on each of the five predictors in

separate regressions with average productivity growth over the entire period as dependent

variable. I first discuss the Colombian results, which tend to be very consistent across the

different productivity measures. The evidence on exporting and frequent investments mirrors

the results on the previous debate. Both are associated with significantly higher productivity

growth, but only under the assumption that all plants operate with the same technology,

i.e. using a parametric productivity measure. For the two nonparametric measures, I still

find a positive but insignificant effect. The point estimates for the parametric measures

are large, relative to the average unweighted growth rate of 5.7%. Exporters increase their

productivity at a 2.9% higher rate than nonexporters and the growth premium is 4.1% for

plants that invest every year relative to plants that never invest.36

[Table 6 approximately here]

Importing inputs or paying royalties are not associate with a significant growth effect.

With only a single exception, all point estimates are negative, but not significantly different

36Results in the working paper version, see Van Biesebroeck (2003), further indicate that the positive
growth effects associated with investments in fixed capital are more pronounced for frequent investments
than for large investments on average or for large investment spikes.
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from zero. Moreover, the size of the effects are comparable for the different productivity

measures, on average -0.8% for plants that import inputs and -2.8% for plants that pay

royalties. This could reflect that for the sector studied in Colombia, textiles, there is little

scope for technological advances to be embedded in imported inputs or for licensing more

advanced production technologies.

Finally, high levels of human capital are consistently associated with lower productivity

growth using each of the six productivity measures and the effect is estimated significantly

different from zero in four cases. A one standard deviation increase in the human capital

measure, e.g. from the average of 0.35 to 0.82, is estimated to lower productivity growth by

almost 7%. Especially for the nonparametric methods, the results point towards much lower

productivity growth at plants that employ skilled workers.37

For Zimbabwe, the data is too noisy or the sample size too small to find many effects

that are precisely estimated. The only indicator that is consistently associated with large

productivity growth effects is the dummy for investments in advanced technology. The

point estimates are extremely large, on average 26%, similar in size for all methods, and

significantly different from zero for four of the six measures. Firms that do not invest

in advanced technology, approximately one third of the sample, are clearly and quickly

falling behind in productivity. As in Colombia, the evidence also hints at positive effects

of exporting and frequent investments on productivity growth and is suggestive of negative

effects of high levels of human capital. In contrast with Colombia, importing inputs tends

to be associated with somewhat higher productivity growth. The effects of exporting and

importing are estimated to be of similar magnitude, except for the SF2 results. Overall, the

point estimates are of very similar magnitude for all productivity measures.

While the economic effects are interesting in their own right, the uniformity of the effects

across the different productivity measurement methodologies is striking. This is in line with

the direct comparison of productivity growth estimates earlier. For Colombia, the sign of

only 3 of the 30 coefficient estimates is the opposite of the majority finding. In each case,

the anomalous result is for the index numbers and it is never significant. For Zimbabwe,

even with the lower precision of the estimates, only 4 of the 30 signs indicate disagreement

between measures. The conclusion on the importance of endogenous growth explanations

for productivity growth are very much independent of the choice of estimation method for

productivity: export status, frequent investments, and technology adoption are to varying

degrees associated with higher productivity growth, while firms that employ many skilled

37On the other hand, plants with a large fraction of managers had on average a 2% higher productivity
growth with the parametric productivity measures, see Van Biesebroeck (2003).
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workers improve productivity more slowly.

5.3 What drives aggregate productivity growth?

The third debate is affected by both productivity level and growth estimates and the distri-

bution of these among firms. The aggregate productivity level, of the entire economy or a

single industry, can increase for two reasons: individual firms can improve in productivity, a

within-firm effect, or the relative weight of firms with above average productivity level can

increases, a between-firms effect. Reallocation of inputs or outputs can take place at the in-

tensive margin, between firms already active, or at the extensive margin, as more productive

entrants gain market share or less productive firms exit from the industry. I investigate the

relative importance of the two effects using three different decompositions.38

Baily, Hulten, and Campbell (1992) (BHC), decomposed aggregate productivity growth

as follows:
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stay, enter∑

i=s,n

θit lnAit −
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( ∏
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x

θxt−τ lnAxt−τ︸ ︷︷ ︸ (20)

Aggregate productivity is defined as the output-weighted (θit) average of log productivity

of individual firms (lnAit).
39 The linear aggregation of log productivity implies a geometric

average of productivity levels; it permits a linear decomposition into terms with an intuitive

interpretation. Firms that stay in the sample from t − τ to t are indexed by s. Their

contribution is split in two parts. The first term of equation (20) measures the effect of firm

level productivity changes, weighted by their initial share. The second term captures the

reallocation effect at the intensive margin; it sums changes in shares using productivity as

weight. The last two terms capture reallocation at the extensive margin, the net contribution

of firms entering or exiting the industry. Recently, Petrin and Levinsohn (2006) criticized

this definition of aggregate productivity growth, in particularly because the reallocation term

is large and volatile. I limit attention to the within term and investigate whether different

productivity measures find it to be of similar magnitude.

38Eslava et al. (2004) investigate for Colombia whether and how reallocation can have an effect. I only
look at the size of the within-plant effect.

39In these decompositions, lnAit is the logarithm of productivity calculated using the different methods,
omitting the normalization by the average log productivity level.
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Haltiwanger (1997) introduced an improved decomposition for unbalanced panels where

all firm level productivity terms are expressed as differences from aggregate productivity in

t− τ . In addition, he decomposed the second term into a ‘pure’ between effect, weighing the

change in shares by the relative productivity in the initial period and a covariance term.40

The BHC decomposition amounts to lumping the entire covariance term with the between

term. An alternative, by Griliches and Regev (1995) (GR), is to modify equation (20) using

θs = (θst +θst−τ )/2 as weight in the first term and similarly replace lnAst in the second term

by (lnAst + lnAst−τ )/2. This is equivalent to splitting the covariance term equally between

the within and between terms.41

An entirely different decomposition was introduced by Olley and Pakes (1996) (OP).

Aggregate productivity is defined as the average of the productivity levels, as opposed to

the logarithms, and decomposed into two terms as follows:

A′
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The first term is the unweighted average productivity and the second term captures to what

extent firms of above average size (∆θ′it > 0) have above average productivity (∆A′
it > 0).

An alternative measure of the relative importance of the within-firm effect in aggregate

productivity growth is obtained by comparing cumulative growth in the unweighted average

(A′
t) to the growth in the aggregate (A′

t).

For the U.S. manufacturing sector, Baily et al. (1992) find that in the periods 1972–77

and 1982–87, respectively 70% and 87% of aggregate productivity growth comes from the

reallocation of output shares, with only a minor role for within-plant changes. In the 1977-82

period, the aggregate growth and within-plant effect are even of opposite signs. Haltiwanger

(1997) finds that over the 1977-87 period 54% of the aggregate growth comes from plant level

growth. Foster, Haltiwanger, and Krizan (2001) show that these findings are sensitive to

the choice of sector, time period, or to the use of labor instead of multifactor productivity.

Results with the GR decomposition tend to be more stable. For the telecommunications

sector, Olley and Pakes (1996) find with their decomposition that the unweighted average

productivity level declines almost continuously from 1974 to 1987, while the weighted aver-

age is relatively constant. As a result, the second term in their decomposition accounts for

only 10% of the total initially, but for almost one third at the end of the period. Bartelsman

40The second term in equation (20) is decomposed as
∑

s ∆θst (lnAst−τ − lnAt−τ ) +
∑

s ∆θst ∆ lnAst.
41See Foster, Haltiwanger, and Krizan (2001) for a more elaborate discussion.
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and Dhrymes (1998) argue that it is more intuitive to use an input aggregate as weight.

Their graphical decomposition is similar in spirit to OP and they find that for the U.S. man-

ufacturing sector the simple average of plant level productivity growth is relatively constant,

while the weighted average increases substantially. They also conclude that reallocation ef-

fects dominate. Results for Colombia in Tybout and Liu (1996) suggest that within-plant

changes can account for virtually the entire aggregate productivity growth.42 For a number

of sub-Saharan African countries, including Zimbabwe, Van Biesebroeck (2005b) also finds

that within-firm effects dominate. On the other hand, Pavcnik (2002) finds for the manu-

facturing sector in Chile that only one third of aggregate productivity growth is accounted

for by the unweighted plant level growth.

Clearly, there is a wide range of estimates in the literature. The results in Table 7

indicate whether the way productivity is measured matters for the conclusion and whether

the experience for Colombia and Zimbabwe was similar. Column (1a) contains the cumulative

change in aggregate productivity over the 1981–1991 period for Colombia and column (1b)

contains the cumulative change for Zimbabwe from 1993 to 1995. The aggregate is calculated

according to equation (21).43 Average growth in Colombia across the different measures was

7.2% per year or 101% cumulatively over ten years. In Zimbabwe, average growth was

negative at -13.6% per year.

Columns (2a) and (2b) contain the growth in the unweighted average productivity level

over the same time periods, expressed as a fraction of the aggregate growth rate. With as sole

exception the SF2 measure in Zimbabwe, the growth rate of the unweighted average tracks the

aggregate growth rate very closely. In Colombia, it accounts on average for 97% of aggregate

growth with little variation across methods. The decline in unweighted average productivity

in Zimbabwe averages 72% of the decline in the weighted average. Outliers are SF1, which

finds exactly the same trend in the weighted and unweighted average, and SF2, which finds a

much smaller decline in the aggregate and an even smaller decline in the unweighted average.

Reallocation of output weights appears to have been fairly unimportant. The difference in

the relative importance of the within-firm effect across the different productivity measures

is a lot smaller than the difference in the actual growth estimates.

[Table 7 approximately here]

42The comparison with the U.S. results should be done cautiously as Tybout and Liu (1996) calculate
year-by-year changes, while the between-plants effect, especially at the extensive margin, generally increases
in importance over longer time horizons.

43For the index numbers, the productivity level is calculated differently than before, using the average wage
share in the sample for all firms in order to calculate an aggregate growth estimate that is unit invariant.
Chain-linking the input shares, as in Aw et al. (2000), is an alternative solution.
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The within-plant terms in the BHC decomposition are reported in columns (3a) and (3b),

and for the GR decomposition in columns (4a) and (4b). Especially for Colombia and for the

GR decomposition, the size of the effects is extremely similar for all productivity measures.

As in the first column, the estimates of aggregate growth differ more (not reported), which

introduces some variation in the fraction of aggregate growth explained by within-plant

changes: for BHC it ranges from 11% to 25% and for GR from 21% to 33%. Irrespective

of the productivity measure used, the reallocation of output between plants is found to be

a much more important driver of aggregate change over a 10 year period if this alternative

definition of aggregate productivity is used.

For Zimbabwe, differences between the productivity measures are slightly more pro-

nounced, but only the SF2 results are (again) a clear outlier. The within-firm terms in the

linear decomposition of the geometric average, columns (3b) and (4b), provide consistent

evidence for the importance of firm level productivity changes. The within term accounts

on average for 95% of aggregate growth using the BHC decomposition and for 85% of ag-

gregate growth in the GR case. The much shorter time period, only three years, makes it

not surprising that the importance of within-firm changes is much larger than in Colombia.

For Zimbabwe, the importance of the within term is not only consistent across the different

productivity measures, but also across the three decomposition methods.

The different productivity measures come up with very uniform within-firm effects, at

least comparing within each column of Table 7 across the rows. One would reach almost

identical conclusions with each method to estimate productivity in Colombia and very similar

conclusions in Zimbabwe. Only the SF2 estimator in the case of Zimbabwe, where two

firm-specific coefficients are estimated using three years of data and where the sample is

limited to survivors, produces results that deviate from the other methods. In Colombia,

the conclusion on the importance of the within-plant effect does depend on the aggregation

and decomposition method used. Over the ten year interval, its importance is estimated to

be much larger for the arithmetic average (OP) than for the geometric averages (BHC or

GR), but the results are extremely similar for the different productivity measures.44

44The use of an aggregate input weight instead of output, as proposed in Bartelsman and Dhrymes (1998)
and Tybout and Liu (1996), leads to results that vary somewhat more across methods, see Van Biesebroeck
(2003). In this case the weights depend directly on the input coefficient estimates, which vary more across
methods than the productivity estimates, as discussed earlier.
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6 Lessons

In response to the question “Does it matter which method one uses to estimate productiv-

ity?”, the answer crucially depends on what one is interested in. If the main interest is in

the residual—the nondeterministic part of the production function—the choice of method

is of lesser importance. The fraction of output differences that cannot be explained by in-

put differences is similar across methods and even more so for differences in output growth

rates. The correlations, interquartile ranges, and averages of the productivity measures are

very similar for the different methods. Even the deterministic DEA and index numbers

generate results that are surprisingly similar to the parametric productivity estimates. Only

the method that explicitly takes out random measurement error (SF2) produces noticeably

different estimates, especially for productivity growth.45

When revisiting the three productivity debates, only in one instance do the conclusions

depend on the productivity estimator used.

• While exporters have higher productivity levels using each method, there is evidence

of learning-by-exporting only if one assumes the same production technology for all

firms, i.e. using a parametrically estimated production function.

• Firm level productivity growth is robustly associated with frequent investments in

physical capital, somewhat with export activity, and in Zimbabwe with the adoption

of new technologies.

• In the two developing economies studied, firm level productivity growth tracks aggre-

gate growth closely, especially if the aggregate is constructed by averaging the level of

productivity (as opposed to the logarithm).

Especially for the latter two debates, the choice of estimation method for productivity is

immaterial to the conclusions reached. Other methodology choices, e.g. how to control for

endogeneity, how to calculate the aggregate, or how long of a time period to study, tend

to be at least as important as the choice of productivity estimation method. At the same

time, the results do indicate that differences between countries, even when exactly the same

method is used, can be quite large.

It should be stressed that if one is interested in the observable part of the production

process, the estimation method matters a great deal. The range of estimates for the capital

45Van Biesebroeck (2003) finds that these differences are much reduced if constant returns to scale is
enforced, but the input coefficient estimates rarely support the constant returns to scale assumption.
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and labor coefficients is wide and even the relative importance of the two inputs varies sub-

stantially by method. The coefficient estimates can be used directly to assess the importance

of each production factor or returns to scale. The evaluation of some policy changes will

also depend on these estimates. For example, the fraction of the productivity premium for

exporters that can be explained by the realization of scale economies depends crucially on

the estimation method. Also, if an input aggregate is used as weight, instead of output, to

aggregate productivity growth, the choice of method again matters.
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Table 1: Summary statistics

Colombia Zimbabwe
mean stand. dev. mean stand. dev.

value added 4007 30575 164478 365686
employment 66 141 337 655
capital stock (% of VA) 0.397 1.651 1.458 2.401
investment (% of VA) 0.077 0.708 0.312 0.920
wage bill (% of VA) 0.572 0.407 0.492 0.664

output growth 0.041 0.524 0.079 0.570
employment growth -0.013 0.354 0.035 0.267
capital growth -0.033 0.560 0.326 1.055

exports output (yes = 1) 0.087 0.282 0.542 0.499
imports inputs  (yes = 1) 0.064 0.245 0.644 0.480
paid royalties? (Colombia);           
any technology effort? (Zimbabwe)

0.019 0.136 0.682 0.467

fraction of years with positive 
investments

0.352 0.478 0.403 0.491

fraction of skilled/technical 
employees

0.344 0.475 0.350 0.477

number of years active 9.423 4.132 2.421 0.669
unique firms/plants 1957 179
number of observations 14348 394
Notes: For more information on the data sets see Roberts (1996) for Colombia and Van 
Biesebroeck (2005b) for Zimbabwe.



Table 2: Input coefficient estimates

Colombia Zimbabwe
labor capital RTS labor capital RTS

IN1 0.53 0.47 1.00 0.39 0.61 1.00
(0.20) (0.20) (0.35) (0.35)

DEA2 0.72 0.28 0.88 0.68 0.32 1.04
(0.33) (0.33) (0.27) (0.27)

OLS 0.86 0.18 1.04 0.82 0.39 1.21
(.007) (.004) (.055) (.033)

SF1 0.68 0.17 0.85 0.70 0.64 1.34
(.018) (.010) (.068) (.064)

SF2 0.32 0.09 0.41 0.38 0.10 0.48
(.011) (.009) (.055) (.030)

GMM 0.21 0.24 0.45 0.70 0.43 1.13
(.009) (.007) (.054) (.033)

OP 0.74 0.18 0.92 0.75 0.36 1.11
(.023) (.017) (.061) (.040)

Notes:  For the parametric methods the coefficient estimates are reported with standard errors in 
parenthesis (RTS stands for returns to scale). 1 The labor coefficient for IN is the average wage bill as 
a fraction of value added, the capital coefficient is 1 - labor coefficient. The standard deviations over 
the entire sample are in parenthesis.  2For DEA, the median of the relative input weights and the 
median returns to scale are reported; standard deviations are in parenthesis.



Table 3: Productivity level and growth estimates

Colombia Zimbabwe
productivity level productivity growth productivity level productivity growth
Interquartile range Average Interquartile range Average

25th % 75th % unweighted weighted 25th % 75th % unweighted weighted
(1a) (2a) (3a) (4a) (1b) (2b) (3b) (4b)

IN -0.413 0.382 0.062 0.088 -0.387 0.742 -0.136 -0.336
DEA -0.498 0.522 0.065 0.106 -0.535 0.618 -0.074 -0.042
SF1 -0.360 0.340 0.060 0.121 -0.726 0.631 -0.133 -0.273
SF2 -0.566 0.457 0.049 0.054 -0.399 1.278 0.024 0.037
GMM -0.542 0.491 0.057 0.120 -0.499 0.547 -0.080 -0.141
OP -0.337 0.319 0.061 0.121 -0.503 0.554 -0.061 -0.101
Notes: The quartiles for productivity level are for the entire sample, pooling all plant-year (Colombia) or firm-year 
(Zimbabwe) observations, normalizing productivity by the median for the year. The average productivity growth 
statistics are also calculated over the entire sample and output weights by year) are used when weighing.



Table 4: Correlations between different productivity level and growth estimates

Colombia Zimbabwe

Productivity level Productivity level
IN DEA GMM SF1 SF2 OP IN DEA GMM SF1 SF2 OP

IN 1 IN 1
DEA 0.87 1 DEA 0.79 1
GMM 0.66 0.87 1 GMM 0.93 0.84 1
SF1 0.76 0.80 0.89 1 SF1 0.71 0.55 0.81 1
SF2 0.46 0.70 0.93 0.80 1 SF2 0.38 0.62 0.34 0.01 1
OP 0.78 0.77 0.83 0.99 0.73 1 OP 0.92 0.85 0.99 0.72 0.45 1
LP 0.53 0.49 0.67 0.92 0.65 0.92 LP 0.68 0.70 0.73 0.25 0.82 0.82
labor 
(level) 0.10 0.43 0.66 0.27 0.71 0.17

labor 
(level) 0.28 0.34 0.11 -0.41 0.83 0.20

Productivity growth Productivity growth
IN DEA GMM SF1 SF2 OP IN DEA GMM SF1 SF2 OP

IN 1 IN 1
DEA 0.93 1 DEA 0.77 1
GMM 0.91 0.94 1 GMM 0.88 0.93 1
SF1 0.90 0.86 0.95 1 SF1 0.90 0.89 0.98 1
SF2 0.45 0.47 0.54 0.50 1 SF2 0.63 0.69 0.75 0.66 1
OP 0.90 0.84 0.92 1.00 0.49 1 OP 0.86 0.93 1.00 0.95 0.78 1
LP 0.79 0.70 0.82 0.96 0.45 0.97 LP 0.54 0.72 0.75 0.62 0.78 0.81

labor (t) 
(growth) -0.10 0.08 0.09 -0.23 0.09 -0.27

labor (t) 
(growth) 0.03 -0.09 -0.10 -0.11 0.10 -0.11

labor (t+1) 
(growth) 0.04 0.04 0.05 0.10 0.06 0.10

labor (t+1) 
(growth) 0.01 0.04 0.09 0.12 0.10 0.08

Notes: Partial correlations statistics between the different (log) productivity measures and between productivity and 
labor input; correlations are calculated across all observations (plant/firm - years). The bottom row reports the 
correlation between labor input growth and one period lagged productivity.



Table 5: First debate: Learning-by-exporting

Colombia Zimbabwe
OLS simultaneous matching OLS simultaneous matching

equations estimator equations estimator
(1a) (2a) (3a) (1b) (2b) (3b)

IN 0.020 0.032 0.091 0.348** 0.124 -0.061
(.029) (.038) (.133) (.164) (.203) (.272)

DEA 0.026 0.051 0.008 0.408*** 0.151 0.557
(.030) (.038) (.140) (.141) (.209) (.821)

GMM 0.268*** 0.126*** 0.127 0.393*** 0.049 0.576
(.026) (.035) (.105) (.135) (.212) (.505)

SF1 0.333*** 0.156*** 0.230** 0.386*** -0.057 0.124
(.026) (.035) (.095) (.147) (.193) (.808)

SF2 0.399*** 0.031** 0.139 0.376*** -0.033 0.056
(.024) (.015) (.091) (.142) (.149) (1.061)

OP 0.326*** 0.128*** 0.223** 0.396*** 0.061 0.695
(.026) (.035) (.095) (.134) (.209) (.526)

Note: The reported statistics are coefficient estimates and standard errors on the lagged export dummy in 
separate regressions with the different log productivity measures as dependent variable. Results in the first 
columns are for an OLS regression on the full sample, controlling for employment and time, location, and 
industry dummies. Statistics in the second column are coefficient estimates on once lagged export status in 
the productivity equation, estimated by the simultaneous equation model of Clerides et al.  (1998). 
Estimates in the third column are from a regression similar to the first column, but on the limited sample of 
treated (new exporters) and matched plants, using nearest neighbor matching with replacement. The 
propensity score used in the match is estimated by a Probit on lagged productivity, employment, and wages 
and time, location, and industry dummies. *** Significant at the 1% level, ** 5%, * 10%.



Table 6: Second debate: Endogenous growth

Colombia Zimbabwe
dependent variable: productivity growth -- explanatory variable in column headings

export import pay for invest high export import invest in invest high
output inputs royalties frequently HC output inputs technology frequently HC

IN -0.002 0.003 -0.019 -0.022 -0.285** -0.014 0.002 0.197 0.045 -0.418
(0.016) (0.021) (0.024) (0.019) (0.047) (0.140) (0.135) (0.186) (0.197) (0.391)

DEA 0.008 -0.009 -0.021 0.009 -0.246** 0.152 0.132 0.302** 0.173 -0.404
(0.016) (0.021) (0.024) (0.018) (0.046) (0.110) (0.106) (0.142) (0.155) (0.309)

GMM 0.036** -0.013 -0.029 0.055** -0.089** 0.094 0.092 0.271** 0.050 -0.198
(0.015) (0.020) (0.022) (0.017) (0.044) (0.106) (0.103) (0.138) (0.150) (0.299)

SF1 0.032** -0.004 -0.025 0.034** -0.065 0.124 0.106 0.266** 0.106 -0.183
(0.015) (0.019) (0.022) (0.017) (0.043) (0.128) (0.123) (0.166) (0.179) (0.358)

SF2 0.019 -0.020 -0.047 0.047** -0.084 -0.095 0.393** 0.260 -0.195 0.111
(0.023) (0.030) (0.034) (0.026) (0.067) (0.173) (0.170) (0.225) (0.231) (0.431)

OP 0.030** -0.003 -0.025 0.027* -0.070* 0.086 0.088 0.273** 0.032 -0.195
(0.015) (0.019) (0.022) (0.017) (0.043) (0.101) (0.097) (0.131) (0.142) (0.284)

Notes: Each coefficient comes from a separate regression of productivity growth, averaged over the period each 
plant or firm is active, on the different covariates indicated in each column, including time, industry, and location 
dummies as controls.       ** Significant at 5% level * 10%.



Table 7: Third debate: Importance of within-plant/firm changes

Colombia (1981 - 1991) Zimbabwe (1993 - 1995)
arithmetic average geometric average arithmetic average geometric average

aggregate unweighted BHC GR aggregate unweighted BHC GR
growth growth growth growth

(1a) (2a) (3a) (4a) (1b) (2b) (3b) (4b)
IN1 1.207 84% 0.180 0.241 -0.331 75% -0.320 -0.315
DEA 0.986 89% 0.154 0.221 -0.227 98% -0.173 -0.129
GMM 0.743 102% 0.120 0.234 -0.279 76% -0.275 -0.264
SF1 1.054 109% 0.148 0.239 -0.374 100% -0.408 -0.450
SF2 0.922 90% 0.127 0.240 -0.062 12% -0.056 0.061
OP 1.160 107% 0.154 0.240 -0.243 71% -0.236 -0.211

1 The index numbers use the same input weights for each plant/firm in the respective samples (the average wage 
share) to construct an aggregate growth rate that is unit-invariant.

Notes: Statistics in columns (1a) and (1b) are cumulative aggregate growth rates, i.e. the percentage change
over the entire period in the aggregate productivity level calculated according to equation (21). Statistics in
columns (2a) and (2b) are the cumulative growth rates for the first term on the right hand side of equation (21),
expressed as a percentage of the growth rate in the first columns. Columns (3a) and (3b) are the within plant
effects in the decomposition of the log productivity aggregate, i.e. the first term in equation (20). Columns (4a)
and (4b) contain the same statistic, but use the average output weight instead of the initial weight.


